This commit is contained in:
2026-02-03 17:29:34 -08:00
parent 76df19f332
commit c7d044beed
3 changed files with 388 additions and 5 deletions

View File

@@ -9,6 +9,13 @@
- Setting SHORT_CHANNEL to False will now grey out SHORT_CHANNEL_REGRESSION, as it is impossible to regress what does not exist. Sets SHORT_CHANNEL_REGRESSION to False under the hood when it is greyed out regardless of what is displayed. Fixes [Issue 47](https://git.research.dezeeuw.ca/tyler/flares/issues/47)
- Projects can now be saves if files have different parent folders. Fixes [Issue 48](https://git.research.dezeeuw.ca/tyler/flares/issues/48)
- It is no longer possible to attempt a save before any data has been processed. A popup will now display if a save is attempted with nothing to save
- Fixed a bug where LONG_CHANNEL_THRESH was not being applied in the processing steps
- Added a new option in the Analysis window for Group Functional Connectivity. Implements [Issue 50](https://git.research.dezeeuw.ca/tyler/flares/issues/50)
- Group Functional connectivity is still in development and the results should currently be taken with a grain of salt
- A warning is displayed when entering the Group Functional Connectivity Viewer disclosing this
- Fixed a bug when updating optode positions that would prevent .txt files from being selected. Fixes [Issue 54](https://git.research.dezeeuw.ca/tyler/flares/issues/54)
- Fixed a bug where the secondary download server would never get contacted if the primary failed
- Automatic downloads will now ignore prerelease versions. Fixes [Issue 52](https://git.research.dezeeuw.ca/tyler/flares/issues/52)
# Version 1.2.0
@@ -134,7 +141,7 @@
- Added a group option when clicking on a participant's file
- If no group is specified, the participant will be added to the "Default" group
- Added option to update the optode positions in a snirf file from the Options menu (F6)
- Fixed [Issue 3](https://git.research.dezeeuw.ca/tyler/flares/issues/3), [Issue 4](https://git.research.dezeeuw.ca/tyler/flares/issues/4), [Issue 17](https://git.research.dezeeuw.ca/tyler/flares/issues/17), [Issue 21](https://git.research.dezeeuw.ca/tyler/flares/issues/21), [Issue 22](https://git.research.dezeeuw.ca/tyler/flares/issues/22)
- Fixed [Issue 3](https://git.research.dezeeuw.ca/tyler/flares/issues/3), [Issue 5](https://git.research.dezeeuw.ca/tyler/flares/issues/5), [Issue 17](https://git.research.dezeeuw.ca/tyler/flares/issues/17), [Issue 21](https://git.research.dezeeuw.ca/tyler/flares/issues/21), [Issue 22](https://git.research.dezeeuw.ca/tyler/flares/issues/22)
# Version 1.0.1

190
flares.py
View File

@@ -3403,7 +3403,7 @@ def process_participant(file_path, progress_callback=None):
fig_individual["short"] = fig_short_chans
else:
short_chans = None
get_long_channels(raw, min_dist=SHORT_CHANNEL_THRESH, max_dist=LONG_CHANNEL_THRESH) # Don't update the existing raw
raw = get_long_channels(raw, min_dist=0, max_dist=LONG_CHANNEL_THRESH) # keep both short channels and all channels up to the threshold length
if progress_callback: progress_callback(4)
logger.info("Step 4 Completed.")
@@ -3892,3 +3892,191 @@ def functional_connectivity_betas(raw_hbo, n_lines, vmin, event_name=None):
vmax=1.0,
colormap='hot' # Use 'hot' to make positive connections pop
)
def get_single_subject_beta_corr(raw_hbo, event_name=None, config=None):
"""Processes one participant and returns their correlation matrix."""
raw_hbo = raw_hbo.copy().pick(picks="hbo")
ann = raw_hbo.annotations
# Rename for trial-level GLM
new_desc = [f"{desc}__trial_{i:03d}" for i, desc in enumerate(ann.description)]
ann.description = np.array(new_desc)
if config == None:
print("no config")
design_matrix = make_first_level_design_matrix(
raw=raw_hbo, hrf_model='fir',
fir_delays=np.arange(0, 12, 1),
drift_model='cosine', drift_order=1
)
else:
print("config")
if config.get("SHORT_CHANNEL_REGRESSION") == True:
short_chans = get_short_channels(raw_hbo, max_dist=config.get("SHORT_CHANNEL_THRESH"))
design_matrix = make_first_level_design_matrix(
raw=raw_hbo,
stim_dur=config.get("STIM_DUR"),
hrf_model=config.get("HRF_MODEL"),
drift_model=config.get("DRIFT_MODEL"),
high_pass=config.get("HIGH_PASS"),
drift_order=config.get("DRIFT_ORDER"),
fir_delays=config.get("FIR_DELAYS"),
add_regs=short_chans.get_data().T,
add_reg_names=short_chans.ch_names,
min_onset=config.get("MIN_ONSET"),
oversampling=config.get("OVERSAMPLING")
)
print("yep")
else:
design_matrix = make_first_level_design_matrix(
raw=raw_hbo,
stim_dur=config.get("STIM_DUR"),
hrf_model=config.get("HRF_MODEL"),
drift_model=config.get("DRIFT_MODEL"),
high_pass=config.get("HIGH_PASS"),
drift_order=config.get("DRIFT_ORDER"),
fir_delays=config.get("FIR_DELAYS"),
min_onset=config.get("MIN_ONSET"),
oversampling=config.get("OVERSAMPLING")
)
glm_results = run_glm(raw_hbo, design_matrix)
betas = np.array(glm_results.theta())
reg_names = list(design_matrix.columns)
n_channels = betas.shape[0]
# Filter trials by event name
trial_tags = sorted({
col.split("_delay")[0] for col in reg_names
if "__trial_" in col and (event_name is None or col.startswith(event_name + "__"))
})
if not trial_tags:
return None, None
# Build Beta Series
beta_series = np.zeros((n_channels, len(trial_tags)))
for t, tag in enumerate(trial_tags):
idx = [i for i, col in enumerate(reg_names) if col.startswith(f"{tag}_delay")]
beta_series[:, t] = np.mean(betas[:, idx], axis=1).flatten()
#beta_series[:, t] = np.max(betas[:, idx], axis=1).flatten() #TODO: Figure out which one to use
# Z-score and GSR (Global Signal Regression)
beta_series = zscore(beta_series, axis=1)
global_signal = np.mean(beta_series, axis=0)
for i in range(n_channels):
slope, _ = np.polyfit(global_signal, beta_series[i, :], 1)
beta_series[i, :] -= (slope * global_signal)
# Correlation Matrix
corr_matrix = np.corrcoef(beta_series)
return corr_matrix, raw_hbo.ch_names
def run_group_functional_connectivity(haemo_dict, config_dict, selected_paths, event_name, n_lines, vmin):
"""Aggregates multiple participants and triggers the plot."""
all_z_matrices = []
common_names = None
for path in selected_paths:
raw = haemo_dict.get(path)
config = config_dict.get(path)
if raw is None: continue
print(config)
corr, names = get_single_subject_beta_corr(raw, event_name, config)
if corr is not None:
# Fisher Z-transform for averaging
z_mat = np.arctanh(np.clip(corr, -0.99, 0.99))
all_z_matrices.append(z_mat)
common_names = names
from scipy.stats import ttest_1samp
# 1. Convert list to 3D array: (Participants, Channels, Channels)
group_z_data = np.array(all_z_matrices)
print("1")
# 2. Perform a T-Test across the participant dimension (axis 0)
# We test if the mean Z-score is different from 0
# C:\Users\tyler\Desktop\research\.venv\Lib\site-packages\scipy\stats\_axis_nan_policy.py:611: RuntimeWarning: Precision loss occurred in moment calculation due to catastrophic cancellation. This occurs when the data are nearly identical. Results may be unreliable.
# res = hypotest_fun_out(*samples, axis=axis, **kwds)
print("--- Variance Check ---")
# ADD THIS LINE: Define n_channels based on the data shape
# group_z_data.shape is (n_participants, n_channels, n_channels)
n_channels = group_z_data.shape[1]
variance_matrix = np.var(group_z_data, axis=0)
# Find where variance is exactly 0 (or very close to it)
zero_var_indices = np.where(variance_matrix < 1e-15)
coords = list(zip(zero_var_indices[0], zero_var_indices[1]))
diag_count = 0
non_diag_pairs = []
for r, c in coords:
if r == c:
diag_count += 1
else:
non_diag_pairs.append((r, c))
print(f"Total pairs with zero variance: {len(coords)}")
print(f"Identical diagonals: {diag_count}/{n_channels}")
if non_diag_pairs:
print(f"Warning: {len(non_diag_pairs)} non-diagonal pairs have zero variance!")
for r, c in non_diag_pairs[:10]: # Print first 10
print(f" - Pair: Channel {r} & Channel {c}")
else:
print("Clean! Zero variance only exists on the diagonals.")
print("----------------------")
t_stats, p_values = ttest_1samp(group_z_data, popmean=0, axis=0)
print("2")
# 3. Multiple Comparisons Correction (FDR)
# We only care about the upper triangle (unique connections)
n_channels = p_values.shape[0]
triu_indices = np.triu_indices(n_channels, k=1)
flat_p = p_values[triu_indices]
reject, corrected_p = multipletests(flat_p, method='fdr_bh', alpha=0.05)[:2]
# 4. Create the final "Significant" Matrix
avg_r = np.tanh(np.mean(group_z_data, axis=0))
sig_avg_r = np.zeros_like(avg_r)
# Only keep connections that are Significant AND above your VMIN (r-threshold)
for idx, is_sig in enumerate(reject):
row, col = triu_indices[0][idx], triu_indices[1][idx]
r_val = avg_r[row, col]
if is_sig and abs(r_val) >= vmin:
sig_avg_r[row, col] = sig_avg_r[col, row] = r_val
# 5. Plot the significant results
# if not all_z_matrices:
# return
# # Average and convert back to R
# avg_z = np.mean(all_z_matrices, axis=0)
# avg_r = np.tanh(avg_z)
# # Thresholding
# avg_r[np.abs(avg_r) < vmin] = 0
plot_connectivity_circle(
sig_avg_r, common_names, n_lines=n_lines,
title=f"Group Connectivity: {event_name if event_name else 'All Events'}",
vmin=vmin, vmax=1.0, colormap='hot'
)

194
main.py
View File

@@ -426,14 +426,18 @@ class UpdateCheckThread(QThread):
for url in urls:
try:
response = requests.get(API_URL, timeout=5)
response = requests.get(url, timeout=5)
response.raise_for_status()
releases = response.json()
if not releases:
return None, None
continue
latest = next((r for r in releases if not r.get("prerelease") and not r.get("draft")), None)
if not latest:
continue
latest = releases[0]
tag = latest["tag_name"].lstrip("v")
for asset in latest.get("assets", []):
@@ -2775,6 +2779,182 @@ class ParticipantFunctionalConnectivityWidget(FlaresBaseWidget):
class GroupFunctionalConnectivityWidget(FlaresBaseWidget):
def __init__(self, haemo_dict, group, config_dict):
super().__init__("GroupFunctionalConnectivityWidget")
self.setWindowTitle("FLARES Group Viewer")
self.haemo_dict = haemo_dict
self.group = group
self.config_dict = config_dict
self.show_all_events = True
self._updating_checkstates = False
QMessageBox.warning(self, "Warning - FLARES", f"Functional Connectivity is still in development and the results should currently be taken with a grain of salt. "
"By clicking OK, you accept that the images generated may not be factual.")
# Create mappings: file_path -> participant label and dropdown display text
self.participant_map = {} # file_path -> "Participant 1"
self.participant_dropdown_items = [] # "Participant 1 (filename)"
for i, file_path in enumerate(self.haemo_dict.keys(), start=1):
short_label = f"Participant {i}"
display_label = f"{short_label} ({os.path.basename(file_path)})"
self.participant_map[file_path] = short_label
self.participant_dropdown_items.append(display_label)
self.layout = QVBoxLayout(self)
self.top_bar = QHBoxLayout()
self.layout.addLayout(self.top_bar)
self.group_to_paths = {}
for file_path, group_name in self.group.items():
self.group_to_paths.setdefault(group_name, []).append(file_path)
self.group_names = sorted(self.group_to_paths.keys())
self.group_dropdown = QComboBox()
self.group_dropdown.addItem("<None Selected>")
self.group_dropdown.addItems(self.group_names)
self.group_dropdown.setCurrentIndex(0)
self.group_dropdown.currentIndexChanged.connect(self.update_participant_list_for_group)
self.participant_dropdown = self._create_multiselect_dropdown(self.participant_dropdown_items)
self.participant_dropdown.currentIndexChanged.connect(self.update_participant_dropdown_label)
self.participant_dropdown.setEnabled(False)
self.event_dropdown = QComboBox()
self.event_dropdown.addItem("<None Selected>")
self.index_texts = [
"0 (Betas)",
#"1 (Significance)",
#"2 (Brain Activity Visualization)",
# "3 (fourth image)",
]
self.image_index_dropdown = self._create_multiselect_dropdown(self.index_texts)
self.image_index_dropdown.currentIndexChanged.connect(self.update_image_index_dropdown_label)
self.submit_button = QPushButton("Submit")
self.submit_button.clicked.connect(self.show_brain_images)
self.top_bar.addWidget(QLabel("Group:"))
self.top_bar.addWidget(self.group_dropdown)
self.top_bar.addWidget(QLabel("Participants:"))
self.top_bar.addWidget(self.participant_dropdown)
self.top_bar.addWidget(QLabel("Event:"))
self.top_bar.addWidget(self.event_dropdown)
self.top_bar.addWidget(QLabel("Image Indexes:"))
self.top_bar.addWidget(self.image_index_dropdown)
self.top_bar.addWidget(self.submit_button)
self.scroll = QScrollArea()
self.scroll.setWidgetResizable(True)
self.scroll_content = QWidget()
self.grid_layout = QGridLayout(self.scroll_content)
self.scroll.setWidget(self.scroll_content)
self.layout.addWidget(self.scroll)
self.thumb_size = QSize(280, 180)
self.showMaximized()
def show_brain_images(self):
import flares
selected_event = self.event_dropdown.currentText()
if selected_event == "<None Selected>":
selected_event = None
selected_display_names = self._get_checked_items(self.participant_dropdown)
selected_file_paths = []
for display_name in selected_display_names:
for fp, short_label in self.participant_map.items():
expected_display = f"{short_label} ({os.path.basename(fp)})"
if display_name == expected_display:
selected_file_paths.append(fp)
break
if selected_event:
valid_paths = []
for fp in selected_file_paths:
raw = self.haemo_dict.get(fp)
# Check if this participant actually has the event in their annotations
if raw is not None and hasattr(raw, "annotations"):
if selected_event in raw.annotations.description:
valid_paths.append(fp)
selected_file_paths = valid_paths
selected_indexes = [
int(s.split(" ")[0]) for s in self._get_checked_items(self.image_index_dropdown)
]
if not selected_file_paths:
print("No participants selected.")
return
# Only keep indexes 0 and 1 that need parameters
parameterized_indexes = {
0: [
{
"key": "n_lines",
"label": "<Description>",
"default": "20",
"type": int,
},
{
"key": "vmin",
"label": "<Description>",
"default": "0.9",
"type": float,
},
],
}
# Inject full_text from index_texts
for idx, params_list in parameterized_indexes.items():
full_text = self.index_texts[idx] if idx < len(self.index_texts) else f"{idx} (No label found)"
for param_info in params_list:
param_info["full_text"] = full_text
indexes_needing_params = {idx: parameterized_indexes[idx] for idx in selected_indexes if idx in parameterized_indexes}
param_values = {}
if indexes_needing_params:
dialog = ParameterInputDialog(indexes_needing_params, parent=self)
if dialog.exec_() == QDialog.Accepted:
param_values = dialog.get_values()
if param_values is None:
return
else:
return
for idx in selected_indexes:
if idx == 0:
params = param_values.get(idx, {})
n_lines = params.get("n_lines", None)
vmin = params.get("vmin", None)
if n_lines is None or vmin is None:
print(f"Missing parameters for index {idx}, skipping.")
continue
flares.run_group_functional_connectivity(self.haemo_dict, self.config_dict, selected_file_paths, selected_event, 50, 0.5)
elif idx == 1:
pass
elif idx == 2:
pass
elif idx == 3:
pass
else:
print(f"No method defined for index {idx}")
class MultiProgressDialog(QDialog):
def __init__(self, parent=None):
super().__init__(parent)
@@ -4005,6 +4185,9 @@ class ViewerLauncherWidget(QWidget):
btn7 = QPushButton("Open Functional Connectivity Viewer [BETA]")
btn7.clicked.connect(lambda: self.open_participant_functional_connectivity_viewer(haemo_dict, epochs_dict))
btn8 = QPushButton("Open Group Functional Connectivity Viewer [BETA]")
btn8.clicked.connect(lambda: self.open_group_functional_connectivity_viewer(haemo_dict, group_dict, config_dict))
btn4 = QPushButton("Open Inter-Group Viewer")
btn4.clicked.connect(lambda: self.open_group_viewer(haemo_dict, cha_dict, df_ind, design_matrix, contrast_results_dict, group_dict))
@@ -4019,6 +4202,7 @@ class ViewerLauncherWidget(QWidget):
layout.addWidget(btn2)
layout.addWidget(btn3)
layout.addWidget(btn7)
layout.addWidget(btn8)
layout.addWidget(btn4)
layout.addWidget(btn5)
layout.addWidget(btn6)
@@ -4039,6 +4223,10 @@ class ViewerLauncherWidget(QWidget):
self.participant_brain_viewer = ParticipantFunctionalConnectivityWidget(haemo_dict, epochs_dict)
self.participant_brain_viewer.show()
def open_group_functional_connectivity_viewer(self, haemo_dict, group, config_dict):
self.participant_brain_viewer = GroupFunctionalConnectivityWidget(haemo_dict, group, config_dict)
self.participant_brain_viewer.show()
def open_group_viewer(self, haemo_dict, cha_dict, df_ind, design_matrix, contrast_results_dict, group):
self.participant_brain_viewer = GroupViewerWidget(haemo_dict, cha_dict, df_ind, design_matrix, contrast_results_dict, group)
self.participant_brain_viewer.show()