improvements

This commit is contained in:
2026-01-14 23:54:03 -08:00
parent 473c945563
commit fe4e8904b4
8 changed files with 225 additions and 186 deletions

1
.gitignore vendored
View File

@@ -174,3 +174,4 @@ cython_debug/
# PyPI configuration file # PyPI configuration file
.pypirc .pypirc
/individual_images

View File

@@ -1,3 +1,15 @@
# Version 1.2.0
- Added new parameters to the right side of the screen
- These parameters include SHOW_OPTODE_NAMES, SECONDS_TO_STRIP_HR, MAX_LOW_HR, MAX_HIGH_HR, SMOTHING_WINDOW_HR, HEART_RATE_WINDOW, BAD_CHANNELS_HANDLING, MAX_DIST, MIN_NEIGHBORS, L_TRANS_BANDWIDTH, H_TRANS_BANDWIDTH, RESAMPLE, RESAMPLE_FREQ, STIM_DUR, HRF_MODEL, HIGH_PASS, DRIFT_ORDER, FIR_DELAYS, MIN_ONSET, OVERSAMPLING, SHORT_CHANNEL_REGRESSION, NOISE_MODEL, and BINS.
- All the new parameters have default values matching the underlying values in version 1.1.7
- The order of the parameters have changed to match the order that the code runs when the Process button is clicked
- Moved TIME_WINDOW_START and TIME_WINDOW_END to the 'Other' category
- Fixed a bug causing SCI to not work when HEART_RATE was set to False
- Bad channels can now be dealt with by taking no action, removing them completely, or interpolating them based on their neighbours. Interpolation remains the default option
- Fixed an underlying deprecation warning
- Fixed an issue causing some overlay elements to not render on the brain for certain devices
# Version 1.1.7 # Version 1.1.7
- Fixed a bug where having both a L_FREQ and H_FREQ would cause only the L_FREQ to be used - Fixed a bug where having both a L_FREQ and H_FREQ would cause only the L_FREQ to be used

297
flares.py
View File

@@ -21,6 +21,7 @@ import os.path as op
import re import re
import traceback import traceback
from concurrent.futures import ProcessPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor, as_completed
from queue import Empty
# External library imports # External library imports
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@@ -53,7 +54,7 @@ from scipy.signal import welch, butter, filtfilt # type: ignore
import pywt # type: ignore import pywt # type: ignore
import neurokit2 as nk # type: ignore import neurokit2 as nk # type: ignore
# Backen visualization needed to be defined for pyinstaller # Backend visualization needed to be defined for pyinstaller
import pyvistaqt # type: ignore import pyvistaqt # type: ignore
import vtkmodules.util.data_model import vtkmodules.util.data_model
import vtkmodules.util.execution_model import vtkmodules.util.execution_model
@@ -89,9 +90,10 @@ from mne_nirs.io.fold import fold_channel_specificity # type: ignore
from mne_nirs.preprocessing import peak_power # type: ignore from mne_nirs.preprocessing import peak_power # type: ignore
from mne_nirs.statistics._glm_level_first import RegressionResults # type: ignore from mne_nirs.statistics._glm_level_first import RegressionResults # type: ignore
# Needs to be set for men
os.environ["SUBJECTS_DIR"] = str(data_path()) + "/subjects" # type: ignore os.environ["SUBJECTS_DIR"] = str(data_path()) + "/subjects" # type: ignore
# TODO: Tidy this up
FIXED_CATEGORY_COLORS = { FIXED_CATEGORY_COLORS = {
"SCI only": "skyblue", "SCI only": "skyblue",
"PSP only": "salmon", "PSP only": "salmon",
@@ -112,10 +114,6 @@ FIXED_CATEGORY_COLORS = {
} }
AGE: float
GENDER: str
# SECONDS_TO_STRIP: int
DOWNSAMPLE: bool DOWNSAMPLE: bool
DOWNSAMPLE_FREQUENCY: int DOWNSAMPLE_FREQUENCY: int
@@ -123,21 +121,37 @@ TRIM: bool
SECONDS_TO_KEEP: float SECONDS_TO_KEEP: float
OPTODE_PLACEMENT: bool OPTODE_PLACEMENT: bool
SHOW_OPTODE_NAMES: bool
HEART_RATE: bool HEART_RATE: bool
SHORT_CHANNEL: bool
SHORT_CHANNEL_THRESH: float
LONG_CHANNEL_THRESH: float
HEART_RATE: bool
SECONDS_TO_STRIP_HR: int
MAX_LOW_HR: int
MAX_HIGH_HR: int
SMOOTHING_WINDOW_HR: int
HEART_RATE_WINDOW: int
SCI: bool SCI: bool
SCI_TIME_WINDOW: int SCI_TIME_WINDOW: int
SCI_THRESHOLD: float SCI_THRESHOLD: float
SNR: bool SNR: bool
# SNR_TIME_WINDOW : int # SNR_TIME_WINDOW : int #TODO: is this needed?
SNR_THRESHOLD: float SNR_THRESHOLD: float
PSP: bool PSP: bool
PSP_TIME_WINDOW: int PSP_TIME_WINDOW: int
PSP_THRESHOLD: float PSP_THRESHOLD: float
BAD_CHANNELS_HANDLING: str
MAX_DIST: float
MIN_NEIGHBORS: int
TDDR: bool TDDR: bool
WAVELET: bool WAVELET: bool
@@ -145,57 +159,39 @@ IQR: float
WAVELET_TYPE: str WAVELET_TYPE: str
WAVELET_LEVEL: int WAVELET_LEVEL: int
HEART_RATE = True # True if heart rate should be calculated. This helps the SCI, PSP, and SNR methods to be more accurate.
SECONDS_TO_STRIP_HR =5 # Amount of seconds to temporarily strip from the data to calculate heart rate more effectively. Useful if participant removed cap while still recording.
MAX_LOW_HR = 40 # Any heart rate values lower than this will be set to this value.
MAX_HIGH_HR = 200 # Any heart rate values higher than this will be set to this value.
SMOOTHING_WINDOW_HR = 100 # Heart rate will be calculated as a rolling average over this many amount of samples.
HEART_RATE_WINDOW = 25 # Amount of BPM above and below the calculated average to use for a range of resting BPM.
ENHANCE_NEGATIVE_CORRELATION: bool ENHANCE_NEGATIVE_CORRELATION: bool
FILTER: bool FILTER: bool
L_FREQ: float L_FREQ: float
H_FREQ: float H_FREQ: float
L_TRANS_BANDWIDTH: float
H_TRANS_BANDWIDTH: float
SHORT_CHANNEL: bool STIM_DUR: float
SHORT_CHANNEL_THRESH: float HRF_MODEL: str
LONG_CHANNEL_THRESH: float DRIFT_MODEL: str
HIGH_PASS: float
DRIFT_ORDER: int
FIR_DELAYS: range
MIN_ONSET: int
OVERSAMPLING: int
REMOVE_EVENTS: list REMOVE_EVENTS: list
SHORT_CHANNEL_REGRESSION: bool
NOISE_MODEL: str
BINS: int
N_JOBS: int
TIME_WINDOW_START: int TIME_WINDOW_START: int
TIME_WINDOW_END: int TIME_WINDOW_END: int
DRIFT_MODEL: str
VERBOSITY = True VERBOSITY = True
# FIXME: Shouldn't need each ordering - just order it before checking AGE = 25 # Assume 25 if not set from the GUI. This will result in a reasonable PPF
FIXED_CATEGORY_COLORS = {
"SCI only": "skyblue",
"PSP only": "salmon",
"SNR only": "lightgreen",
"PSP + SCI": "orange",
"SCI + SNR": "violet",
"PSP + SNR": "gold",
"SCI + PSP": "orange",
"SNR + SCI": "violet",
"SNR + PSP": "gold",
"PSP + SNR + SCI": "gray",
"SCI + PSP + SNR": "gray",
"SCI + SNR + PSP": "gray",
"PSP + SCI + SNR": "gray",
"PSP + SNR + SCI": "gray",
"SNR + SCI + PSP": "gray",
"SNR + PSP + SCI": "gray",
}
AGE = 25
GENDER = "" GENDER = ""
GROUP = "Default" GROUP = "Default"
# These are parameters that are required for the analysis
REQUIRED_KEYS: dict[str, Any] = { REQUIRED_KEYS: dict[str, Any] = {
# "SECONDS_TO_STRIP": int, # "SECONDS_TO_STRIP": int,
@@ -262,7 +258,7 @@ PLATFORM_NAME = platform.system().lower()
# Configure logging to file with timestamps and realtime flush # Configure logging to file with timestamps and realtime flush
if PLATFORM_NAME == 'darwin': if PLATFORM_NAME == 'darwin':
logging.basicConfig( logging.basicConfig(
filename=os.path.join(os.path.dirname(sys.executable), "../../../fnirs_analysis.log"), filename=os.path.join(os.path.dirname(sys.executable), "../../../fnirs_analysis.log"), # Needed to get out of the bundled application
level=logging.INFO, level=logging.INFO,
format='%(asctime)s - %(processName)s - %(levelname)s - %(message)s', format='%(asctime)s - %(processName)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', datefmt='%Y-%m-%d %H:%M:%S',
@@ -320,8 +316,6 @@ def set_metadata(file_path, metadata: dict[str, Any]) -> None:
val = file_metadata.get(key, None) val = file_metadata.get(key, None)
if val not in (None, '', [], {}, ()): # check for "empty" values if val not in (None, '', [], {}, ()): # check for "empty" values
globals()[key] = val globals()[key] = val
from queue import Empty # This works with multiprocessing.Manager().Queue()
def gui_entry(config: dict[str, Any], gui_queue: Queue, progress_queue: Queue) -> None: def gui_entry(config: dict[str, Any], gui_queue: Queue, progress_queue: Queue) -> None:
def forward_progress(): def forward_progress():
@@ -825,7 +819,7 @@ def get_hbo_hbr_picks(raw):
return hbo_picks, hbr_picks, hbo_wl, hbr_wl return hbo_picks, hbr_picks, hbo_wl, hbr_wl
def interpolate_fNIRS_bads_weighted_average(raw, bad_channels, max_dist=0.03, min_neighbors=2): def interpolate_fNIRS_bads_weighted_average(raw, max_dist=0.03, min_neighbors=2):
""" """
Interpolate bad fNIRS channels using a distance-weighted average of nearby good channels. Interpolate bad fNIRS channels using a distance-weighted average of nearby good channels.
@@ -1117,17 +1111,17 @@ def mark_bads(raw, bad_sci, bad_snr, bad_psp):
def filter_the_data(raw_haemo): def filter_the_data(raw_haemo):
# --- STEP 5: Filtering (0.010.2 Hz bandpass) --- # --- STEP 5: Filtering (0.01-0.2 Hz bandpass) ---
fig_filter = raw_haemo.compute_psd(fmax=3).plot( fig_filter = raw_haemo.compute_psd(fmax=3).plot(
average=True, color="r", show=False, amplitude=True average=True, color="r", show=False, amplitude=True
) )
if L_FREQ == 0 and H_FREQ != 0: if L_FREQ == 0 and H_FREQ != 0:
raw_haemo = raw_haemo.filter(l_freq=None, h_freq=H_FREQ, h_trans_bandwidth=0.02) raw_haemo = raw_haemo.filter(l_freq=None, h_freq=H_FREQ, h_trans_bandwidth=H_TRANS_BANDWIDTH)
elif L_FREQ != 0 and H_FREQ == 0: elif L_FREQ != 0 and H_FREQ == 0:
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=None, l_trans_bandwidth=0.002) raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=None, l_trans_bandwidth=L_TRANS_BANDWIDTH)
elif L_FREQ != 0 and H_FREQ != 0: elif L_FREQ != 0 and H_FREQ != 0:
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=H_FREQ, l_trans_bandwidth=0.002, h_trans_bandwidth=0.02) raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=H_FREQ, l_trans_bandwidth=L_TRANS_BANDWIDTH, h_trans_bandwidth=H_TRANS_BANDWIDTH)
else: else:
print("No filter") print("No filter")
#raw_haemo = raw_haemo.filter(l_freq=None, h_freq=0.4, h_trans_bandwidth=0.2) #raw_haemo = raw_haemo.filter(l_freq=None, h_freq=0.4, h_trans_bandwidth=0.2)
@@ -1307,6 +1301,19 @@ def epochs_calculations(raw_haemo, events, event_dict):
def make_design_matrix(raw_haemo, short_chans): def make_design_matrix(raw_haemo, short_chans):
events_to_remove = REMOVE_EVENTS
filtered_annotations = [ann for ann in raw_haemo.annotations if ann['description'] not in events_to_remove]
new_annot = Annotations(
onset=[ann['onset'] for ann in filtered_annotations],
duration=[ann['duration'] for ann in filtered_annotations],
description=[ann['description'] for ann in filtered_annotations]
)
# Set the new annotations
raw_haemo.set_annotations(new_annot)
raw_haemo.resample(1, npad="auto") raw_haemo.resample(1, npad="auto")
raw_haemo._data = raw_haemo._data * 1e6 raw_haemo._data = raw_haemo._data * 1e6
# 2) Create design matrix # 2) Create design matrix
@@ -1314,26 +1321,28 @@ def make_design_matrix(raw_haemo, short_chans):
short_chans.resample(1) short_chans.resample(1)
design_matrix = make_first_level_design_matrix( design_matrix = make_first_level_design_matrix(
raw=raw_haemo, raw=raw_haemo,
hrf_model='fir', stim_dur=STIM_DUR,
stim_dur=0.5, hrf_model=HRF_MODEL,
fir_delays=range(15),
drift_model=DRIFT_MODEL, drift_model=DRIFT_MODEL,
high_pass=0.01, high_pass=HIGH_PASS,
oversampling=1, drift_order=DRIFT_ORDER,
min_onset=-125, fir_delays=range(15),
add_regs=short_chans.get_data().T, add_regs=short_chans.get_data().T,
add_reg_names=short_chans.ch_names add_reg_names=short_chans.ch_names,
min_onset=MIN_ONSET,
oversampling=OVERSAMPLING
) )
else: else:
design_matrix = make_first_level_design_matrix( design_matrix = make_first_level_design_matrix(
raw=raw_haemo, raw=raw_haemo,
hrf_model='fir', stim_dur=STIM_DUR,
stim_dur=0.5, hrf_model=HRF_MODEL,
fir_delays=range(15),
drift_model=DRIFT_MODEL, drift_model=DRIFT_MODEL,
high_pass=0.01, high_pass=HIGH_PASS,
oversampling=1, drift_order=DRIFT_ORDER,
min_onset=-125, fir_delays=range(15),
min_onset=MIN_ONSET,
oversampling=OVERSAMPLING
) )
print(design_matrix.head()) print(design_matrix.head())
@@ -3310,18 +3319,20 @@ def hr_calc(raw):
return fig, hr1, hr2, low, high return fig, hr1, hr2, low, high
def process_participant(file_path, progress_callback=None): def process_participant(file_path, progress_callback=None):
fig_individual: dict[str, Figure] = {} fig_individual: dict[str, Figure] = {}
# Step 1: Load # Step 1: Preprocessing
raw = load_snirf(file_path) raw = load_snirf(file_path)
fig_raw = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Loaded Raw", show=False) fig_raw = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Loaded Raw", show=False)
fig_individual["Loaded Raw"] = fig_raw fig_individual["Loaded Raw"] = fig_raw
if progress_callback: progress_callback(1) if progress_callback: progress_callback(1)
logger.info("1") logger.info("Step 1 Completed.")
# Step 2: Trimming
if TRIM: if TRIM:
if hasattr(raw, 'annotations') and len(raw.annotations) > 0: if hasattr(raw, 'annotations') and len(raw.annotations) > 0:
# Get time of first event # Get time of first event
@@ -3329,17 +3340,16 @@ def process_participant(file_path, progress_callback=None):
trim_time = max(0, first_event_time - SECONDS_TO_KEEP) # Ensure we don't go negative trim_time = max(0, first_event_time - SECONDS_TO_KEEP) # Ensure we don't go negative
raw.crop(tmin=trim_time) raw.crop(tmin=trim_time)
# Shift annotation onsets to match new t=0 # Shift annotation onsets to match new t=0
import mne
ann = raw.annotations ann = raw.annotations
ann_shifted = mne.Annotations( ann_shifted = Annotations(
onset=ann.onset - trim_time, # shift to start at zero onset=ann.onset - trim_time, # shift to start at zero
duration=ann.duration, duration=ann.duration,
description=ann.description description=ann.description
) )
data = raw.get_data() data = raw.get_data()
info = raw.info.copy() info = raw.info.copy()
raw = mne.io.RawArray(data, info) raw = RawArray(data, info)
raw.set_annotations(ann_shifted) raw.set_annotations(ann_shifted)
logger.info(f"Trimmed raw data: start at {trim_time}s (5s before first event), t=0 at new start") logger.info(f"Trimmed raw data: start at {trim_time}s (5s before first event), t=0 at new start")
@@ -3349,169 +3359,162 @@ def process_participant(file_path, progress_callback=None):
fig_trimmed = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Trimmed Raw", show=False) fig_trimmed = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Trimmed Raw", show=False)
fig_individual["Trimmed Raw"] = fig_trimmed fig_individual["Trimmed Raw"] = fig_trimmed
if progress_callback: progress_callback(2) if progress_callback: progress_callback(2)
logger.info("2") logger.info("Step 2 Completed.")
# Step 1.5: Verify optode positions # Step 3: Verify Optode Placement
if OPTODE_PLACEMENT: if OPTODE_PLACEMENT:
fig_optodes = raw.plot_sensors(show_names=True, to_sphere=True, show=False) # type: ignore fig_optodes = raw.plot_sensors(show_names=SHOW_OPTODE_NAMES, to_sphere=True, show=False) # type: ignore
fig_individual["Plot Sensors"] = fig_optodes fig_individual["Plot Sensors"] = fig_optodes
if progress_callback: progress_callback(3) if progress_callback: progress_callback(3)
logger.info("3") logger.info("Step 3 Completed.")
# Step 2: Bad from SCI # Step 4: Short/Long Channels
if SHORT_CHANNEL:
short_chans = get_short_channels(raw, max_dist=SHORT_CHANNEL_THRESH)
fig_short_chans = short_chans.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Short Channels Only", show=False)
fig_individual["short"] = fig_short_chans
else:
short_chans = None
get_long_channels(raw, min_dist=SHORT_CHANNEL_THRESH, max_dist=LONG_CHANNEL_THRESH) # Don't update the existing raw
if progress_callback: progress_callback(4)
logger.info("Step 4 Completed.")
# Step 5: Heart Rate
if HEART_RATE: if HEART_RATE:
fig, hr1, hr2, low, high = hr_calc(raw) fig, hr1, hr2, low, high = hr_calc(raw)
fig_individual["PSD"] = fig fig_individual["PSD"] = fig
fig_individual['HeartRate_PSD'] = hr1 fig_individual['HeartRate_PSD'] = hr1
fig_individual['HeartRate_Time'] = hr2 fig_individual['HeartRate_Time'] = hr2
if progress_callback: progress_callback(4) if progress_callback: progress_callback(5)
logger.info("4") logger.info("Step 5 Completed.")
# Step 6: Scalp Coupling Index
bad_sci = [] bad_sci = []
if SCI: if SCI:
if HEART_RATE:
bad_sci, fig_sci_1, fig_sci_2 = calculate_scalp_coupling(raw, low, high) bad_sci, fig_sci_1, fig_sci_2 = calculate_scalp_coupling(raw, low, high)
else:
bad_sci, fig_sci_1, fig_sci_2 = calculate_scalp_coupling(raw)
fig_individual["SCI1"] = fig_sci_1 fig_individual["SCI1"] = fig_sci_1
fig_individual["SCI2"] = fig_sci_2 fig_individual["SCI2"] = fig_sci_2
if progress_callback: progress_callback(5) if progress_callback: progress_callback(6)
logger.info("5") logger.info("Step 6 Completed.")
# Step 2: Bad from SNR # Step 7: Signal to Noise Ratio
bad_snr = [] bad_snr = []
if SNR: if SNR:
bad_snr, fig_snr = calculate_signal_noise_ratio(raw) bad_snr, fig_snr = calculate_signal_noise_ratio(raw)
fig_individual["SNR1"] = fig_snr fig_individual["SNR1"] = fig_snr
if progress_callback: progress_callback(6) if progress_callback: progress_callback(7)
logger.info("6") logger.info("Step 7 Completed.")
# Step 3: Bad from PSP # Step 8: Peak Spectral Power
bad_psp = [] bad_psp = []
if PSP: if PSP:
bad_psp, fig_psp1, fig_psp2 = calculate_peak_power(raw) bad_psp, fig_psp1, fig_psp2 = calculate_peak_power(raw)
fig_individual["PSP1"] = fig_psp1 fig_individual["PSP1"] = fig_psp1
fig_individual["PSP2"] = fig_psp2 fig_individual["PSP2"] = fig_psp2
if progress_callback: progress_callback(7) if progress_callback: progress_callback(8)
logger.info("7") logger.info("Step 8 Completed.")
# Step 4: Mark the bad channels # Step 9: Bad Channels Handling
if BAD_CHANNELS_HANDLING != "None":
raw, fig_dropped, fig_raw_before, bad_channels = mark_bads(raw, bad_sci, bad_snr, bad_psp) raw, fig_dropped, fig_raw_before, bad_channels = mark_bads(raw, bad_sci, bad_snr, bad_psp)
if fig_dropped and fig_raw_before is not None: if fig_dropped and fig_raw_before is not None:
fig_individual["fig2"] = fig_dropped fig_individual["fig2"] = fig_dropped
fig_individual["fig3"] = fig_raw_before fig_individual["fig3"] = fig_raw_before
if progress_callback: progress_callback(8)
logger.info("8")
# Step 5: Interpolate the bad channels
if bad_channels: if bad_channels:
raw, fig_raw_after = interpolate_fNIRS_bads_weighted_average(raw, bad_channels) if BAD_CHANNELS_HANDLING == "Interpolate":
raw, fig_raw_after = interpolate_fNIRS_bads_weighted_average(raw, max_dist=MAX_DIST, min_neighbors=MIN_NEIGHBORS)
fig_individual["fig4"] = fig_raw_after fig_individual["fig4"] = fig_raw_after
if progress_callback: progress_callback(9) elif BAD_CHANNELS_HANDLING == "Remove":
logger.info("9") pass
#TODO: Is there more needed here?
# Step 6: Optical Density if progress_callback: progress_callback(9)
logger.info("Step 9 Completed.")
# Step 10: Optical Density
raw_od = optical_density(raw) raw_od = optical_density(raw)
fig_raw_od = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Optical Density", show=False) fig_raw_od = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Optical Density", show=False)
fig_individual["Optical Density"] = fig_raw_od fig_individual["Optical Density"] = fig_raw_od
if progress_callback: progress_callback(10) if progress_callback: progress_callback(10)
logger.info("10") logger.info("Step 10 Completed.")
# Step 7: TDDR # Step 11: Temporal Derivative Distribution Repair Filtering
if TDDR: if TDDR:
raw_od = temporal_derivative_distribution_repair(raw_od) raw_od = temporal_derivative_distribution_repair(raw_od)
fig_raw_od_tddr = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="After TDDR (Motion Correction)", show=False) fig_raw_od_tddr = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="After TDDR (Motion Correction)", show=False)
fig_individual["TDDR"] = fig_raw_od_tddr fig_individual["TDDR"] = fig_raw_od_tddr
if progress_callback: progress_callback(11) if progress_callback: progress_callback(11)
logger.info("11") logger.info("Step 11 Completed.")
# Step 12: Wavelet Filtering
if WAVELET: if WAVELET:
raw_od, fig = calculate_and_apply_wavelet(raw_od) raw_od, fig = calculate_and_apply_wavelet(raw_od)
fig_individual["Wavelet"] = fig fig_individual["Wavelet"] = fig
if progress_callback: progress_callback(12) if progress_callback: progress_callback(12)
logger.info("12") logger.info("Step 12 Completed.")
# Step 13: Haemoglobin Concentration
# Step 8: BLL
raw_haemo = beer_lambert_law(raw_od, ppf=calculate_dpf(file_path)) raw_haemo = beer_lambert_law(raw_od, ppf=calculate_dpf(file_path))
fig_raw_haemo_bll = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="HbO and HbR Signals", show=False) fig_raw_haemo_bll = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="HbO and HbR Signals", show=False)
fig_individual["BLL"] = fig_raw_haemo_bll fig_individual["BLL"] = fig_raw_haemo_bll
if progress_callback: progress_callback(13) if progress_callback: progress_callback(13)
logger.info("13") logger.info("Step 13 Completed.")
# Step 9: ENC # Step 14: Enhance Negative Correlation
if ENHANCE_NEGATIVE_CORRELATION: if ENHANCE_NEGATIVE_CORRELATION:
raw_haemo = enhance_negative_correlation(raw_haemo) raw_haemo = enhance_negative_correlation(raw_haemo)
fig_raw_haemo_enc = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="HbO and HbR Signals", show=False) fig_raw_haemo_enc = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Enhance Negative Correlation", show=False)
fig_individual["ENC"] = fig_raw_haemo_enc fig_individual["ENC"] = fig_raw_haemo_enc
if progress_callback: progress_callback(14) if progress_callback: progress_callback(14)
logger.info("14") logger.info("Step 14 Completed.")
# Step 10: Filter # Step 15: Filter
if FILTER: if FILTER:
raw_haemo, fig_filter, fig_raw_haemo_filter = filter_the_data(raw_haemo) raw_haemo, fig_filter, fig_raw_haemo_filter = filter_the_data(raw_haemo)
fig_individual["filter1"] = fig_filter fig_individual["filter1"] = fig_filter
fig_individual["filter2"] = fig_raw_haemo_filter fig_individual["filter2"] = fig_raw_haemo_filter
if progress_callback: progress_callback(15) if progress_callback: progress_callback(15)
logger.info("15") logger.info("Step 15 Completed.")
# Step 11: Get short / long channels # Step 16: Extracting Events
if SHORT_CHANNEL:
short_chans = get_short_channels(raw_haemo, max_dist=SHORT_CHANNEL_THRESH)
fig_short_chans = short_chans.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Short Channels Only", show=False)
fig_individual["short"] = fig_short_chans
else:
short_chans = None
raw_haemo = get_long_channels(raw_haemo, min_dist=SHORT_CHANNEL_THRESH, max_dist=LONG_CHANNEL_THRESH)
if progress_callback: progress_callback(16)
logger.info("16")
# Step 12: Events from annotations
events, event_dict = events_from_annotations(raw_haemo) events, event_dict = events_from_annotations(raw_haemo)
fig_events = plot_events(events, event_id=event_dict, sfreq=raw_haemo.info["sfreq"], show=False) fig_events = plot_events(events, event_id=event_dict, sfreq=raw_haemo.info["sfreq"], show=False)
fig_individual["events"] = fig_events fig_individual["events"] = fig_events
if progress_callback: progress_callback(17) if progress_callback: progress_callback(16)
logger.info("17") logger.info("Step 16 Completed.")
# Step 13: Epoch calculations # Step 17: Epoch Calculations
epochs, fig_epochs = epochs_calculations(raw_haemo, events, event_dict) epochs, fig_epochs = epochs_calculations(raw_haemo, events, event_dict)
for name, fig in fig_epochs: # Unpack the tuple here for name, fig in fig_epochs:
fig_individual[f"epochs_{name}"] = fig # Store only the figure, not the name fig_individual[f"epochs_{name}"] = fig
if progress_callback: progress_callback(18) if progress_callback: progress_callback(17)
logger.info("18") logger.info("Step 17 Completed.")
# Step 14: Design Matrix
events_to_remove = REMOVE_EVENTS
filtered_annotations = [ann for ann in raw.annotations if ann['description'] not in events_to_remove]
new_annot = Annotations(
onset=[ann['onset'] for ann in filtered_annotations],
duration=[ann['duration'] for ann in filtered_annotations],
description=[ann['description'] for ann in filtered_annotations]
)
# Set the new annotations
raw_haemo.set_annotations(new_annot)
# Step 18: Design Matrix
design_matrix, fig_design_matrix = make_design_matrix(raw_haemo, short_chans) design_matrix, fig_design_matrix = make_design_matrix(raw_haemo, short_chans)
fig_individual["Design Matrix"] = fig_design_matrix fig_individual["Design Matrix"] = fig_design_matrix
if progress_callback: progress_callback(19) if progress_callback: progress_callback(18)
logger.info("19") logger.info("Step 18 Completed.")
# Step 15: Run GLM
glm_est = run_glm(raw_haemo, design_matrix) # Step 19: Run GLM
glm_est = run_glm(raw_haemo, design_matrix, noise_model=NOISE_MODEL, bins=BINS, n_jobs=N_JOBS, verbose=VERBOSITY)
# Not used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\nilearn\glm\contrasts.py # Not used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\nilearn\glm\contrasts.py
# Yes used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\mne_nirs\utils\_io.py # Yes used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\mne_nirs\utils\_io.py
# The p-value is calculated from this t-statistic using the Students t-distribution with appropriate degrees of freedom. # The p-value is calculated from this t-statistic using the Student's t-distribution with appropriate degrees of freedom.
# p_value = 2 * stats.t.cdf(-abs(t_statistic), df) # p_value = 2 * stats.t.cdf(-abs(t_statistic), df)
# It is a two-tailed p-value. # It is a two-tailed p-value.
# It says how likely it is to observe the effect you did (or something more extreme) if the true effect was zero (null hypothesis). # It says how likely it is to observe the effect you did (or something more extreme) if the true effect was zero (null hypothesis).
# A small p-value (e.g., < 0.05) suggests the effect is unlikely to be zero — its "statistically significant." # A small p-value (e.g., < 0.05) suggests the effect is unlikely to be zero — it's "statistically significant."
# A large p-value means the data do not provide strong evidence that the effect is different from zero. # A large p-value means the data do not provide strong evidence that the effect is different from zero.
if progress_callback: progress_callback(20) if progress_callback: progress_callback(19)
logger.info("20") logger.info("19")
# Step 16: Plot GLM results # Step 16: Plot GLM results
fig_glm_result = plot_glm_results(file_path, raw_haemo, glm_est, design_matrix) fig_glm_result = plot_glm_results(file_path, raw_haemo, glm_est, design_matrix)

79
main.py
View File

@@ -23,10 +23,9 @@ from pathlib import Path, PurePosixPath
from datetime import datetime from datetime import datetime
from multiprocessing import Process, current_process, freeze_support, Manager from multiprocessing import Process, current_process, freeze_support, Manager
# External library imports
import numpy as np import numpy as np
import pandas as pd import pandas as pd
# External library imports
import psutil import psutil
import requests import requests
@@ -46,7 +45,7 @@ from PySide6.QtGui import QAction, QKeySequence, QIcon, QIntValidator, QDoubleVa
from PySide6.QtSvgWidgets import QSvgWidget # needed to show svgs when app is not frozen from PySide6.QtSvgWidgets import QSvgWidget # needed to show svgs when app is not frozen
CURRENT_VERSION = "1.0.0" CURRENT_VERSION = "1.2.0"
API_URL = "https://git.research.dezeeuw.ca/api/v1/repos/tyler/flares/releases" API_URL = "https://git.research.dezeeuw.ca/api/v1/repos/tyler/flares/releases"
API_URL_SECONDARY = "https://git.research2.dezeeuw.ca/api/v1/repos/tyler/flares/releases" API_URL_SECONDARY = "https://git.research2.dezeeuw.ca/api/v1/repos/tyler/flares/releases"
@@ -58,7 +57,6 @@ SECTIONS = [
{ {
"title": "Preprocessing", "title": "Preprocessing",
"params": [ "params": [
# {"name": "SECONDS_TO_STRIP", "default": 0, "type": int, "help": "Seconds to remove from beginning of all loaded snirf files. Setting this to 0 will remove nothing from the files."},
{"name": "DOWNSAMPLE", "default": True, "type": bool, "help": "Should the snirf files be downsampled? If this is set to True, DOWNSAMPLE_FREQUENCY will be used as the target frequency to downsample to."}, {"name": "DOWNSAMPLE", "default": True, "type": bool, "help": "Should the snirf files be downsampled? If this is set to True, DOWNSAMPLE_FREQUENCY will be used as the target frequency to downsample to."},
{"name": "DOWNSAMPLE_FREQUENCY", "default": 25, "type": int, "help": "Frequency (Hz) to downsample to. If this is set higher than the input data, new data will be interpolated. Only used if DOWNSAMPLE is set to True"}, {"name": "DOWNSAMPLE_FREQUENCY", "default": 25, "type": int, "help": "Frequency (Hz) to downsample to. If this is set higher than the input data, new data will be interpolated. Only used if DOWNSAMPLE is set to True"},
] ]
@@ -74,12 +72,26 @@ SECTIONS = [
"title": "Verify Optode Placement", "title": "Verify Optode Placement",
"params": [ "params": [
{"name": "OPTODE_PLACEMENT", "default": True, "type": bool, "help": "Generate an image for each participant outlining their optode placement."}, {"name": "OPTODE_PLACEMENT", "default": True, "type": bool, "help": "Generate an image for each participant outlining their optode placement."},
{"name": "SHOW_OPTODE_NAMES", "default": True, "type": bool, "help": "Should the optode names be written next to their location or not."},
]
},
{
"title": "Short/Long Channels",
"params": [
{"name": "SHORT_CHANNEL", "default": True, "type": bool, "help": "This should be set to True if the data has a short channel present in the data."},
{"name": "SHORT_CHANNEL_THRESH", "default": 0.015, "type": float, "help": "The maximum distance the short channel can be in metres."},
{"name": "LONG_CHANNEL_THRESH", "default": 0.045, "type": float, "help": "The maximum distance the long channel can be in metres."},
] ]
}, },
{ {
"title": "Heart Rate", "title": "Heart Rate",
"params": [ "params": [
{"name": "HEART_RATE", "default": True, "type": bool, "help": "Attempt to calculate the participants heart rate."}, {"name": "HEART_RATE", "default": True, "type": bool, "help": "Attempt to calculate the participants heart rate."},
{"name": "SECONDS_TO_STRIP_HR", "default": 5, "type": int, "help": "Will remove this many seconds from the start and end of the file. Useful if recording before cap is firmly placed, or participant removes cap while still recording."},
{"name": "MAX_LOW_HR", "default": 40, "type": int, "help": "Any heart rate windows that average below this value will be rounded up to this value."},
{"name": "MAX_HIGH_HR", "default": 200, "type": int, "help": "Any heart rate windows that average above this value will be rounded down to this value."},
{"name": "SMOOTHING_WINDOW_HR", "default": 100, "type": int, "help": "How many individual data points to smooth into a single window."},
{"name": "HEART_RATE_WINDOW", "default": 25, "type": int, "help": "Used for visualization. Shows the range of the calculated heart rate +- this value."},
] ]
}, },
{ {
@@ -94,14 +106,12 @@ SECTIONS = [
"title": "Signal to Noise Ratio", "title": "Signal to Noise Ratio",
"params": [ "params": [
{"name": "SNR", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Signal to Noise Ratio. This metric calculates how much of the observed signal was noise versus how much of it was a useful signal."}, {"name": "SNR", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Signal to Noise Ratio. This metric calculates how much of the observed signal was noise versus how much of it was a useful signal."},
# {"name": "SNR_TIME_WINDOW", "default": -1, "type": int, "help": "SNR time window."},
{"name": "SNR_THRESHOLD", "default": 5.0, "type": float, "help": "SNR threshold (dB). A typical scale would be 0-25, but it is possible for values to be both above and below this range. Higher values correspond to a better signal. If SNR is True, any channels lower than this value will be marked as bad."}, {"name": "SNR_THRESHOLD", "default": 5.0, "type": float, "help": "SNR threshold (dB). A typical scale would be 0-25, but it is possible for values to be both above and below this range. Higher values correspond to a better signal. If SNR is True, any channels lower than this value will be marked as bad."},
] ]
}, },
{ {
"title": "Peak Spectral Power", "title": "Peak Spectral Power",
"params": [ "params": [
{"name": "PSP", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Peak Spectral Power. This metric calculates the amplitude or strength of a frequency component that is most prominent in a particular frequency range or spectrum."}, {"name": "PSP", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Peak Spectral Power. This metric calculates the amplitude or strength of a frequency component that is most prominent in a particular frequency range or spectrum."},
{"name": "PSP_TIME_WINDOW", "default": 3, "type": int, "help": "Independent PSP calculations will be perfomed in a time window for the duration of the value provided, until the end of the file is reached."}, {"name": "PSP_TIME_WINDOW", "default": 3, "type": int, "help": "Independent PSP calculations will be perfomed in a time window for the duration of the value provided, until the end of the file is reached."},
{"name": "PSP_THRESHOLD", "default": 0.1, "type": float, "help": "PSP threshold. A typical scale would be 0-0.5, but it is possible for values to be above this range. Higher values correspond to a better signal. If PSP is True, any channels lower than this value will be marked as bad."}, {"name": "PSP_THRESHOLD", "default": 0.1, "type": float, "help": "PSP threshold. A typical scale would be 0-0.5, but it is possible for values to be above this range. Higher values correspond to a better signal. If PSP is True, any channels lower than this value will be marked as bad."},
@@ -110,15 +120,15 @@ SECTIONS = [
{ {
"title": "Bad Channels Handling", "title": "Bad Channels Handling",
"params": [ "params": [
# {"name": "NOT_IMPLEMENTED", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."}, {"name": "BAD_CHANNELS_HANDLING", "default": [], "type": list, "options": ["Interpolate", "Remove", "None"], "exclusive": True, "help": "How should we deal with the bad channels that occurred? Note: Some analysis options will only work when this is set to 'Interpolate'."},
# {"name": "NOT_IMPLEMENTED", "default": 3, "type": int, "help": "PSP time window."}, {"name": "MAX_DIST", "default": 0.03, "type": float, "help": "The maximum distance to look for neighbours when interpolating. Used only when BAD_CHANNELS_HANDLING is set to 'Interpolate'."},
# {"name": "NOT_IMPLEMENTED", "default": 0.1, "type": float, "help": "PSP threshold."}, {"name": "MIN_NEIGHBORS", "default": 2, "type": int, "help": "The minimumn amount of neighbours needed within the MAX_DIST parameter. Used only when BAD_CHANNELS_HANDLING is set to 'Interpolate'."},
] ]
}, },
{ {
"title": "Optical Density", "title": "Optical Density",
"params": [ "params": [
# Intentionally empty (TODO) # NOTE: Intentionally empty
] ]
}, },
{ {
@@ -139,7 +149,7 @@ SECTIONS = [
{ {
"title": "Haemoglobin Concentration", "title": "Haemoglobin Concentration",
"params": [ "params": [
# Intentionally empty (TODO) # NOTE: Intentionally empty
] ]
}, },
{ {
@@ -154,24 +164,18 @@ SECTIONS = [
{"name": "FILTER", "default": True, "type": bool, "help": "Filter the data."}, {"name": "FILTER", "default": True, "type": bool, "help": "Filter the data."},
{"name": "L_FREQ", "default": 0.005, "type": float, "help": "Any frequencies lower than this value will be removed."}, {"name": "L_FREQ", "default": 0.005, "type": float, "help": "Any frequencies lower than this value will be removed."},
{"name": "H_FREQ", "default": 0.3, "type": float, "help": "Any frequencies higher than this value will be removed."}, {"name": "H_FREQ", "default": 0.3, "type": float, "help": "Any frequencies higher than this value will be removed."},
{"name": "L_TRANS_BANDWIDTH", "default": 0.002, "type": float, "help": "How wide the transitional period should be so the data doesn't just drop off on the lower bound."},
{"name": "H_TRANS_BANDWIDTH", "default": 0.002, "type": float, "help": "How wide the transitional period should be so the data doesn't just drop off on the upper bound."},
] ]
}, },
{ {
"title": "Short/Long Channels", "title": "Extracting Events*",
"params": [
{"name": "SHORT_CHANNEL", "default": True, "type": bool, "help": "This should be set to True if the data has a short channel present in the data."},
{"name": "SHORT_CHANNEL_THRESH", "default": 0.015, "type": float, "help": "The maximum distance the short channel can be in metres."},
{"name": "LONG_CHANNEL_THRESH", "default": 0.045, "type": float, "help": "The maximum distance the long channel can be in metres."},
]
},
{
"title": "Extracting Events",
"params": [ "params": [
#{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."}, #{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."},
] ]
}, },
{ {
"title": "Epoch Calculations", "title": "Epoch Calculations*",
"params": [ "params": [
#{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."}, #{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."},
] ]
@@ -179,18 +183,27 @@ SECTIONS = [
{ {
"title": "Design Matrix", "title": "Design Matrix",
"params": [ "params": [
{"name": "RESAMPLE", "default": True, "type": bool, "help": "The length of your stimulus."},
{"name": "RESAMPLE_FREQ", "default": 1, "type": int, "help": "The length of your stimulus."},
{"name": "STIM_DUR", "default": 0.5, "type": float, "help": "The length of your stimulus."},
{"name": "HRF_MODEL", "default": "fir", "type": str, "help": "Specifies the hemodynamic response function."},
{"name": "DRIFT_MODEL", "default": "cosine", "type": str, "help": "Specifies the desired drift model."},
{"name": "HIGH_PASS", "default": 0.01, "type": float, "help": "High-pass frequency in case of a cosine model (in Hz)."},
{"name": "DRIFT_ORDER", "default": 1, "type": int, "help": "Order of the drift model (in case it is polynomial)"},
{"name": "FIR_DELAYS", "default": "None", "type": range, "help": "In case of FIR design, yields the array of delays used in the FIR model (in scans)."},
{"name": "MIN_ONSET", "default": -24, "type": int, "help": "Minimal onset relative to frame times (in seconds)"},
{"name": "OVERSAMPLING", "default": 50, "type": int, "help": "Oversampling factor used in temporal convolutions."},
{"name": "REMOVE_EVENTS", "default": "None", "type": list, "help": "Remove events matching the names provided before generating the Design Matrix"}, {"name": "REMOVE_EVENTS", "default": "None", "type": list, "help": "Remove events matching the names provided before generating the Design Matrix"},
{"name": "DRIFT_MODEL", "default": "cosine", "type": str, "help": "Drift model for GLM."}, {"name": "SHORT_CHANNEL_REGRESSION", "default": True, "type": bool, "help": "Whether to use short channel regression and regress out the short channels. Requires SHORT_CHANNELS to be True and at least one short channel to be found."},
# {"name": "DURATION_BETWEEN_ACTIVITIES", "default": 35, "type": int, "help": "Time between activities (s)."},
# {"name": "SHORT_CHANNEL_REGRESSION", "default": True, "type": bool, "help": "Use short channel regression."},
] ]
}, },
{ {
"title": "General Linear Model", "title": "General Linear Model",
"params": [ "params": [
{"name": "TIME_WINDOW_START", "default": "0", "type": int, "help": "Where to start averaging the fir model bins. Only affects the significance and contrast images."}, {"name": "NOISE_MODEL", "default": "ar1", "type": str, "help": "Number of jobs for GLM processing."},
{"name": "TIME_WINDOW_END", "default": "15", "type": int, "help": "Where to end averaging the fir model bins. Only affects the significance and contrast images."}, {"name": "BINS", "default": 0, "type": int, "help": "Number of jobs for GLM processing."},
#{"name": "N_JOBS", "default": 1, "type": int, "help": "Number of jobs for GLM processing."}, {"name": "N_JOBS", "default": 1, "type": int, "help": "Number of jobs for GLM processing."},
] ]
}, },
{ {
@@ -202,6 +215,8 @@ SECTIONS = [
{ {
"title": "Other", "title": "Other",
"params": [ "params": [
{"name": "TIME_WINDOW_START", "default": "0", "type": int, "help": "Where to start averaging the fir model bins. Only affects the significance and contrast images."},
{"name": "TIME_WINDOW_END", "default": "15", "type": int, "help": "Where to end averaging the fir model bins. Only affects the significance and contrast images."},
{"name": "MAX_WORKERS", "default": 4, "type": int, "help": "Number of files to be processed at once. Lowering this value may help on underpowered systems."}, {"name": "MAX_WORKERS", "default": 4, "type": int, "help": "Number of files to be processed at once. Lowering this value may help on underpowered systems."},
] ]
}, },
@@ -485,6 +500,7 @@ class UserGuideWindow(QWidget):
label = QLabel("Progress Bar Stages:", self) label = QLabel("Progress Bar Stages:", self)
label2 = QLabel("Stage 1: Load the snirf file\n" label2 = QLabel("Stage 1: Load the snirf file\n"
"Stage 2: Check the optode positions\n" "Stage 2: Check the optode positions\n"
"Stage 12: Get Short/Long Channels\n"
"Stage 3: Scalp Coupling Index\n" "Stage 3: Scalp Coupling Index\n"
"Stage 4: Signal to Noise Ratio\n" "Stage 4: Signal to Noise Ratio\n"
"Stage 5: Peak Spectral Power\n" "Stage 5: Peak Spectral Power\n"
@@ -494,7 +510,6 @@ class UserGuideWindow(QWidget):
"Stage 9: Temporal Derivative Distribution Repair\n" "Stage 9: Temporal Derivative Distribution Repair\n"
"Stage 10: Beer Lambert Law\n" "Stage 10: Beer Lambert Law\n"
"Stage 11: Heart Rate Filtering\n" "Stage 11: Heart Rate Filtering\n"
"Stage 12: Get Short/Long Channels\n"
"Stage 13: Calculate Events from Annotations\n" "Stage 13: Calculate Events from Annotations\n"
"Stage 14: Epoch Calculations\n" "Stage 14: Epoch Calculations\n"
"Stage 15: Design Matrix\n" "Stage 15: Design Matrix\n"
@@ -1358,6 +1373,11 @@ class ParamSection(QWidget):
widget.setValidator(QDoubleValidator()) widget.setValidator(QDoubleValidator())
widget.setText(str(param["default"])) widget.setText(str(param["default"]))
elif param["type"] == list: elif param["type"] == list:
if param.get("exclusive", True):
widget = QComboBox()
widget.addItems(param.get("options", []))
widget.setCurrentText(str(param.get("default", "<None Selected>")))
else:
widget = self._create_multiselect_dropdown(None) widget = self._create_multiselect_dropdown(None)
else: else:
widget = QLineEdit() widget = QLineEdit()
@@ -1466,7 +1486,10 @@ class ParamSection(QWidget):
if expected_type == bool: if expected_type == bool:
values[name] = widget.currentText() == "True" values[name] = widget.currentText() == "True"
elif expected_type == list: elif expected_type == list:
if isinstance(widget, FullClickComboBox):
values[name] = [x.strip() for x in widget.lineEdit().text().split(",") if x.strip()] values[name] = [x.strip() for x in widget.lineEdit().text().split(",") if x.strip()]
elif isinstance(widget, QComboBox):
values[name] = widget.currentText()
else: else:
raw_text = widget.text() raw_text = widget.text()
try: try:

View File

@@ -1025,7 +1025,7 @@ def _handle_sensor_types(meg, eeg, fnirs):
fnirs=dict(channels="fnirs", pairs="fnirs_pairs"), fnirs=dict(channels="fnirs", pairs="fnirs_pairs"),
) )
sensor_alpha = { sensor_alpha = {
key: dict(meg_helmet=0.25, meg=0.25).get(key, 0.8) key: dict(meg_helmet=0.25, meg=0.25).get(key, 1.0)
for ch_dict in alpha_map.values() for ch_dict in alpha_map.values()
for key in ch_dict.values() for key in ch_dict.values()
} }

View File

@@ -586,7 +586,7 @@ class _PyVistaRenderer(_AbstractRenderer):
color = None color = None
else: else:
scalars = None scalars = None
tube = line.tube(radius, n_sides=self.tube_n_sides) tube = line.tube(radius=radius, n_sides=self.tube_n_sides)
actor = _add_mesh( actor = _add_mesh(
plotter=self.plotter, plotter=self.plotter,
mesh=tube, mesh=tube,

View File

@@ -18,7 +18,7 @@ VSVersionInfo(
StringStruct('FileDescription', 'FLARES main application'), StringStruct('FileDescription', 'FLARES main application'),
StringStruct('FileVersion', '1.0.0.0'), StringStruct('FileVersion', '1.0.0.0'),
StringStruct('InternalName', 'flares.exe'), StringStruct('InternalName', 'flares.exe'),
StringStruct('LegalCopyright', '© 2025 Tyler de Zeeuw'), StringStruct('LegalCopyright', '© 2025-2026 Tyler de Zeeuw'),
StringStruct('OriginalFilename', 'flares.exe'), StringStruct('OriginalFilename', 'flares.exe'),
StringStruct('ProductName', 'FLARES'), StringStruct('ProductName', 'FLARES'),
StringStruct('ProductVersion', '1.0.0.0')]) StringStruct('ProductVersion', '1.0.0.0')])

View File

@@ -18,7 +18,7 @@ VSVersionInfo(
StringStruct('FileDescription', 'FLARES updater application'), StringStruct('FileDescription', 'FLARES updater application'),
StringStruct('FileVersion', '1.0.0.0'), StringStruct('FileVersion', '1.0.0.0'),
StringStruct('InternalName', 'main.exe'), StringStruct('InternalName', 'main.exe'),
StringStruct('LegalCopyright', '© 2025 Tyler de Zeeuw'), StringStruct('LegalCopyright', '© 2025-2026 Tyler de Zeeuw'),
StringStruct('OriginalFilename', 'flares_updater.exe'), StringStruct('OriginalFilename', 'flares_updater.exe'),
StringStruct('ProductName', 'FLARES Updater'), StringStruct('ProductName', 'FLARES Updater'),
StringStruct('ProductVersion', '1.0.0.0')]) StringStruct('ProductVersion', '1.0.0.0')])