Compare commits
4 Commits
v1.1.0
...
87073fb218
| Author | SHA1 | Date | |
|---|---|---|---|
| 87073fb218 | |||
| 3d0fbd5c5e | |||
| 3f38f5a978 | |||
| 0607ced61e |
18
changelog.md
18
changelog.md
@@ -1,6 +1,22 @@
|
||||
# Version 1.1.1
|
||||
|
||||
- Fixed the number of rectangles in the progress bar to 19
|
||||
- Fixed a crash when attempting to load a brain image on Windows
|
||||
- Removed hardcoded event annotations. Fixes [Issue 16](https://git.research.dezeeuw.ca/tyler/flares/issues/16)
|
||||
|
||||
|
||||
# Version 1.1.0
|
||||
|
||||
- Changelog details coming soon
|
||||
- Revamped the Analysis window
|
||||
- 4 Options of Participant, Participant Brain, Inter-Group, and Cross Group Brain are available.
|
||||
- Customization is present to query different participants, images, events, brains, etc.
|
||||
- Removed preprocessing options and reorganized their order to correlate with the actual order.
|
||||
- Most preprocessing options removed will be coming back soon
|
||||
- Added a group option when clicking on a participant's file
|
||||
- If no group is specified, the participant will be added to the "Default" group
|
||||
- Added option to update the optode positions in a snirf file from the Options menu (F6)
|
||||
- Fixed [Issue 3](https://git.research.dezeeuw.ca/tyler/flares/issues/3), [Issue 4](https://git.research.dezeeuw.ca/tyler/flares/issues/4), [Issue 17](https://git.research.dezeeuw.ca/tyler/flares/issues/17), [Issue 21](https://git.research.dezeeuw.ca/tyler/flares/issues/21), [Issue 22](https://git.research.dezeeuw.ca/tyler/flares/issues/22)
|
||||
|
||||
|
||||
# Version 1.0.1
|
||||
|
||||
|
||||
500
flares.py
500
flares.py
@@ -48,9 +48,14 @@ from statsmodels.stats.multitest import multipletests
|
||||
from scipy import stats
|
||||
from scipy.spatial.distance import cdist
|
||||
|
||||
# Backen visualization needed to be defined for pyinstaller
|
||||
import pyvistaqt # type: ignore
|
||||
# import vtkmodules.util.data_model
|
||||
# import vtkmodules.util.execution_model
|
||||
|
||||
# External library imports for mne
|
||||
from mne import (
|
||||
EvokedArray, SourceEstimate, Info, Epochs, Label,
|
||||
EvokedArray, SourceEstimate, Info, Epochs, Label, Annotations,
|
||||
events_from_annotations, read_source_spaces,
|
||||
stc_near_sensors, pick_types, grand_average, get_config, set_config, read_labels_from_annot
|
||||
) # type: ignore
|
||||
@@ -125,6 +130,10 @@ TDDR: bool
|
||||
|
||||
ENHANCE_NEGATIVE_CORRELATION: bool
|
||||
|
||||
SHORT_CHANNEL: bool
|
||||
|
||||
REMOVE_EVENTS: list
|
||||
|
||||
VERBOSITY = True
|
||||
|
||||
# FIXME: Shouldn't need each ordering - just order it before checking
|
||||
@@ -171,6 +180,8 @@ REQUIRED_KEYS: dict[str, Any] = {
|
||||
"PSP_TIME_WINDOW": int,
|
||||
"PSP_THRESHOLD": float,
|
||||
|
||||
"SHORT_CHANNEL": bool,
|
||||
"REMOVE_EVENTS": list,
|
||||
# "REJECT_PAIRS": bool,
|
||||
# "FORCE_DROP_ANNOTATIONS": list,
|
||||
# "FILTER_LOW_PASS": float,
|
||||
@@ -1100,7 +1111,7 @@ def epochs_calculations(raw_haemo, events, event_dict):
|
||||
evokeds3 = []
|
||||
colors = []
|
||||
conditions = list(epochs.event_id.keys())
|
||||
cmap = plt.cm.get_cmap("tab10", len(conditions))
|
||||
cmap = plt.get_cmap("tab10", len(conditions))
|
||||
|
||||
for idx, cond in enumerate(conditions):
|
||||
evoked = epochs[cond].average(picks="hbo")
|
||||
@@ -1120,16 +1131,20 @@ def epochs_calculations(raw_haemo, events, event_dict):
|
||||
fig.legend(lines, conditions, loc="lower right")
|
||||
fig_epochs.append(("evoked_topo", help)) # Store with a unique name
|
||||
|
||||
# Evoked response for specific condition ("Reach")
|
||||
evoked_stim1 = epochs['Reach'].average()
|
||||
unique_annotations = set(raw_haemo.annotations.description)
|
||||
|
||||
fig_evoked_hbo = evoked_stim1.copy().pick(picks='hbo').plot(time_unit='s', show=False)
|
||||
fig_evoked_hbr = evoked_stim1.copy().pick(picks='hbr').plot(time_unit='s', show=False)
|
||||
|
||||
fig_epochs.append(("fig_evoked_hbo", fig_evoked_hbo)) # Store with a unique name
|
||||
fig_epochs.append(("fig_evoked_hbr", fig_evoked_hbr)) # Store with a unique name
|
||||
for cond in unique_annotations:
|
||||
|
||||
print("Evoked HbO peak amplitude:", evoked_stim1.copy().pick(picks='hbo').data.max())
|
||||
# Evoked response for specific condition ("Activity")
|
||||
evoked_stim1 = epochs[cond].average()
|
||||
|
||||
fig_evoked_hbo = evoked_stim1.copy().pick(picks='hbo').plot(time_unit='s', show=False)
|
||||
fig_evoked_hbr = evoked_stim1.copy().pick(picks='hbr').plot(time_unit='s', show=False)
|
||||
|
||||
fig_epochs.append((f"fig_evoked_hbo_{cond}", fig_evoked_hbo)) # Store with a unique name
|
||||
fig_epochs.append((f"fig_evoked_hbr_{cond}", fig_evoked_hbr)) # Store with a unique name
|
||||
|
||||
print("Evoked HbO peak amplitude:", evoked_stim1.copy().pick(picks='hbo').data.max())
|
||||
|
||||
evokeds = {}
|
||||
for condition in epochs2.event_id:
|
||||
@@ -1200,26 +1215,36 @@ def epochs_calculations(raw_haemo, events, event_dict):
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def make_design_matrix(raw_haemo, short_chans):
|
||||
|
||||
raw_haemo.resample(1, npad="auto")
|
||||
short_chans.resample(1)
|
||||
raw_haemo._data = raw_haemo._data * 1e6
|
||||
# 2) Create design matrix
|
||||
design_matrix = make_first_level_design_matrix(
|
||||
raw=raw_haemo,
|
||||
hrf_model='fir',
|
||||
stim_dur=0.5,
|
||||
fir_delays=range(15),
|
||||
drift_model='cosine',
|
||||
high_pass=0.01,
|
||||
oversampling=1,
|
||||
min_onset=-125,
|
||||
add_regs=short_chans.get_data().T,
|
||||
add_reg_names=short_chans.ch_names
|
||||
)
|
||||
if SHORT_CHANNEL:
|
||||
short_chans.resample(1)
|
||||
design_matrix = make_first_level_design_matrix(
|
||||
raw=raw_haemo,
|
||||
hrf_model='fir',
|
||||
stim_dur=0.5,
|
||||
fir_delays=range(15),
|
||||
drift_model='cosine',
|
||||
high_pass=0.01,
|
||||
oversampling=1,
|
||||
min_onset=-125,
|
||||
add_regs=short_chans.get_data().T,
|
||||
add_reg_names=short_chans.ch_names
|
||||
)
|
||||
else:
|
||||
design_matrix = make_first_level_design_matrix(
|
||||
raw=raw_haemo,
|
||||
hrf_model='fir',
|
||||
stim_dur=0.5,
|
||||
fir_delays=range(15),
|
||||
drift_model='cosine',
|
||||
high_pass=0.01,
|
||||
oversampling=1,
|
||||
min_onset=-125,
|
||||
)
|
||||
|
||||
print(design_matrix.head())
|
||||
print(design_matrix.columns)
|
||||
@@ -1232,10 +1257,6 @@ def make_design_matrix(raw_haemo, short_chans):
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_montage_locations():
|
||||
"""Get standard MNI montage locations in dataframe.
|
||||
|
||||
@@ -1452,9 +1473,15 @@ def resource_path(relative_path):
|
||||
|
||||
def fold_channels(raw: BaseRaw) -> None:
|
||||
|
||||
# if getattr(sys, 'frozen', False):
|
||||
path = os.path.expanduser("~") + "/mne_data/fOLD/fOLD-public-master/Supplementary"
|
||||
logger.info(path)
|
||||
set_config('MNE_NIRS_FOLD_PATH', resource_path(path)) # type: ignore
|
||||
|
||||
# Locate the fOLD excel files
|
||||
set_config('MNE_NIRS_FOLD_PATH', resource_path("../../mne_data/fOLD/fOLD-public-master/Supplementary")) # type: ignore
|
||||
# # Locate the fOLD excel files
|
||||
# else:
|
||||
# logger.info("yabba")
|
||||
# set_config('MNE_NIRS_FOLD_PATH', resource_path("../../mne_data/fOLD/fOLD-public-master/Supplementary")) # type: ignore
|
||||
|
||||
output = None
|
||||
|
||||
@@ -1516,8 +1543,8 @@ def fold_channels(raw: BaseRaw) -> None:
|
||||
"Brain_Outside",
|
||||
]
|
||||
|
||||
cmap1 = plt.cm.get_cmap('tab20') # First 20 colors
|
||||
cmap2 = plt.cm.get_cmap('tab20b') # Next 20 colors
|
||||
cmap1 = plt.get_cmap('tab20') # First 20 colors
|
||||
cmap2 = plt.get_cmap('tab20b') # Next 20 colors
|
||||
|
||||
# Combine the colors from both colormaps
|
||||
colors = [cmap1(i) for i in range(20)] + [cmap2(i) for i in range(20)] # Total 40 colors
|
||||
@@ -1593,6 +1620,7 @@ def fold_channels(raw: BaseRaw) -> None:
|
||||
for ax in axes[len(hbo_channel_names):]:
|
||||
ax.axis('off')
|
||||
|
||||
plt.show()
|
||||
return fig, legend_fig
|
||||
|
||||
|
||||
@@ -1600,153 +1628,158 @@ def fold_channels(raw: BaseRaw) -> None:
|
||||
|
||||
def individual_significance(raw_haemo, glm_est):
|
||||
|
||||
fig_individual_significances = [] # List to store figures
|
||||
|
||||
# TODO: BAD!
|
||||
cha = glm_est.to_dataframe()
|
||||
|
||||
ch_summary = cha.query("Condition.str.startswith('Reach_delay_') and Chroma == 'hbo'", engine='python')
|
||||
unique_annotations = set(raw_haemo.annotations.description)
|
||||
|
||||
print(ch_summary.head())
|
||||
for cond in unique_annotations:
|
||||
|
||||
channel_averages = ch_summary.groupby('ch_name')['theta'].mean().reset_index()
|
||||
print(channel_averages.head())
|
||||
ch_summary = cha.query(f"Condition.str.startswith('{cond}_delay_') and Chroma == 'hbo'", engine='python')
|
||||
|
||||
print(ch_summary.head())
|
||||
|
||||
channel_averages = ch_summary.groupby('ch_name')['theta'].mean().reset_index()
|
||||
print(channel_averages.head())
|
||||
|
||||
|
||||
reach_ch_summary = ch_summary.query(
|
||||
"Chroma == 'hbo' and Condition.str.startswith('Reach_delay_')", engine='python'
|
||||
)
|
||||
activity_ch_summary = ch_summary.query(
|
||||
f"Chroma == 'hbo' and Condition.str.startswith('{cond}_delay_')", engine='python'
|
||||
)
|
||||
|
||||
# Function to correct p-values per channel
|
||||
def fdr_correct_per_channel(df):
|
||||
df = df.copy()
|
||||
df['pval_fdr'] = multipletests(df['p_value'], method='fdr_bh')[1]
|
||||
return df
|
||||
# Function to correct p-values per channel
|
||||
def fdr_correct_per_channel(df):
|
||||
df = df.copy()
|
||||
df['pval_fdr'] = multipletests(df['p_value'], method='fdr_bh')[1]
|
||||
return df
|
||||
|
||||
# Apply FDR correction grouped by channel
|
||||
corrected = reach_ch_summary.groupby("ch_name", group_keys=False).apply(fdr_correct_per_channel)
|
||||
# Apply FDR correction grouped by channel
|
||||
corrected = activity_ch_summary.groupby("ch_name", group_keys=False).apply(fdr_correct_per_channel)
|
||||
|
||||
# Determine which channels are significant across any delay
|
||||
sig_channels = (
|
||||
corrected.groupby('ch_name')
|
||||
.apply(lambda df: (df['pval_fdr'] < 0.05).any())
|
||||
.reset_index(name='significant')
|
||||
)
|
||||
# Determine which channels are significant across any delay
|
||||
sig_channels = (
|
||||
corrected.groupby('ch_name')
|
||||
.apply(lambda df: (df['pval_fdr'] < 0.05).any())
|
||||
.reset_index(name='significant')
|
||||
)
|
||||
|
||||
# Merge with mean theta (optional for plotting)
|
||||
mean_theta = reach_ch_summary.groupby('ch_name')['theta'].mean().reset_index()
|
||||
sig_channels = sig_channels.merge(mean_theta, on='ch_name')
|
||||
print(sig_channels)
|
||||
# Merge with mean theta (optional for plotting)
|
||||
mean_theta = activity_ch_summary.groupby('ch_name')['theta'].mean().reset_index()
|
||||
sig_channels = sig_channels.merge(mean_theta, on='ch_name')
|
||||
print(sig_channels)
|
||||
|
||||
|
||||
# For example, take the minimum corrected p-value per channel
|
||||
summary_pvals = corrected.groupby('ch_name')['pval_fdr'].min().reset_index()
|
||||
print(summary_pvals)
|
||||
# For example, take the minimum corrected p-value per channel
|
||||
summary_pvals = corrected.groupby('ch_name')['pval_fdr'].min().reset_index()
|
||||
print(summary_pvals)
|
||||
|
||||
|
||||
def parse_ch_name(ch_name):
|
||||
# Extract numbers after S and D in names like 'S10_D5 hbo'
|
||||
match = re.match(r'S(\d+)_D(\d+)', ch_name)
|
||||
if match:
|
||||
return int(match.group(1)), int(match.group(2))
|
||||
else:
|
||||
return None, None
|
||||
def parse_ch_name(ch_name):
|
||||
# Extract numbers after S and D in names like 'S10_D5 hbo'
|
||||
match = re.match(r'S(\d+)_D(\d+)', ch_name)
|
||||
if match:
|
||||
return int(match.group(1)), int(match.group(2))
|
||||
else:
|
||||
return None, None
|
||||
|
||||
|
||||
min_pvals = corrected.groupby('ch_name')['pval_fdr'].min().reset_index()
|
||||
min_pvals = corrected.groupby('ch_name')['pval_fdr'].min().reset_index()
|
||||
|
||||
# Merge the real p-values into sig_channels / avg_df
|
||||
avg_df = sig_channels.merge(min_pvals, on='ch_name')
|
||||
# Merge the real p-values into sig_channels / avg_df
|
||||
avg_df = sig_channels.merge(min_pvals, on='ch_name')
|
||||
|
||||
# Rename columns for consistency
|
||||
avg_df = avg_df.rename(columns={'theta': 't_or_theta', 'pval_fdr': 'p_value'})
|
||||
# Rename columns for consistency
|
||||
avg_df = avg_df.rename(columns={'theta': 't_or_theta', 'pval_fdr': 'p_value'})
|
||||
|
||||
# Add Source and Detector columns again
|
||||
avg_df['Source'], avg_df['Detector'] = zip(*avg_df['ch_name'].map(parse_ch_name))
|
||||
# Add Source and Detector columns again
|
||||
avg_df['Source'], avg_df['Detector'] = zip(*avg_df['ch_name'].map(parse_ch_name))
|
||||
|
||||
# Keep relevant columns
|
||||
avg_df = avg_df[['Source', 'Detector', 't_or_theta', 'p_value']].dropna()
|
||||
# Keep relevant columns
|
||||
avg_df = avg_df[['Source', 'Detector', 't_or_theta', 'p_value']].dropna()
|
||||
|
||||
ABS_SIGNIFICANCE_THETA_VALUE = 1
|
||||
ABS_SIGNIFICANCE_T_VALUE = 1
|
||||
P_THRESHOLD = 0.05
|
||||
SOURCE_DETECTOR_SEPARATOR = "_"
|
||||
Reach = "Reach"
|
||||
ABS_SIGNIFICANCE_THETA_VALUE = 1
|
||||
ABS_SIGNIFICANCE_T_VALUE = 1
|
||||
P_THRESHOLD = 0.05
|
||||
SOURCE_DETECTOR_SEPARATOR = "_"
|
||||
|
||||
t_or_theta = 'theta'
|
||||
for _, row in avg_df.iterrows(): # type: ignore
|
||||
print(f"Source {row['Source']} <-> Detector {row['Detector']}: "
|
||||
f"Avg {t_or_theta}-value = {row['t_or_theta']:.3f}, Avg p-value = {row['p_value']:.3f}")
|
||||
|
||||
t_or_theta = 'theta'
|
||||
for _, row in avg_df.iterrows(): # type: ignore
|
||||
print(f"Source {row['Source']} <-> Detector {row['Detector']}: "
|
||||
f"Avg {t_or_theta}-value = {row['t_or_theta']:.3f}, Avg p-value = {row['p_value']:.3f}")
|
||||
# Extract the cource and detector positions from raw
|
||||
src_pos: dict[int, tuple[float, float]] = {}
|
||||
det_pos: dict[int, tuple[float, float]] = {}
|
||||
for ch in getattr(raw_haemo, "info")["chs"]:
|
||||
ch_name = ch['ch_name']
|
||||
if not ch_name or not ch['loc'].any():
|
||||
continue
|
||||
parts = ch_name.split()[0]
|
||||
src_str, det_str = parts.split(SOURCE_DETECTOR_SEPARATOR)
|
||||
src_num = int(src_str[1:])
|
||||
det_num = int(det_str[1:])
|
||||
src_pos[src_num] = ch['loc'][3:5]
|
||||
det_pos[det_num] = ch['loc'][6:8]
|
||||
|
||||
# Extract the cource and detector positions from raw
|
||||
src_pos: dict[int, tuple[float, float]] = {}
|
||||
det_pos: dict[int, tuple[float, float]] = {}
|
||||
for ch in getattr(raw_haemo, "info")["chs"]:
|
||||
ch_name = ch['ch_name']
|
||||
if not ch_name or not ch['loc'].any():
|
||||
continue
|
||||
parts = ch_name.split()[0]
|
||||
src_str, det_str = parts.split(SOURCE_DETECTOR_SEPARATOR)
|
||||
src_num = int(src_str[1:])
|
||||
det_num = int(det_str[1:])
|
||||
src_pos[src_num] = ch['loc'][3:5]
|
||||
det_pos[det_num] = ch['loc'][6:8]
|
||||
# Set up the plot
|
||||
fig, ax = plt.subplots(figsize=(8, 6)) # type: ignore
|
||||
|
||||
# Set up the plot
|
||||
fig, ax = plt.subplots(figsize=(8, 6)) # type: ignore
|
||||
# Plot the sources
|
||||
for pos in src_pos.values():
|
||||
ax.scatter(pos[0], pos[1], s=120, c='k', marker='o', edgecolors='white', linewidths=1, zorder=3) # type: ignore
|
||||
|
||||
# Plot the sources
|
||||
for pos in src_pos.values():
|
||||
ax.scatter(pos[0], pos[1], s=120, c='k', marker='o', edgecolors='white', linewidths=1, zorder=3) # type: ignore
|
||||
# Plot the detectors
|
||||
for pos in det_pos.values():
|
||||
ax.scatter(pos[0], pos[1], s=120, c='k', marker='s', edgecolors='white', linewidths=1, zorder=3) # type: ignore
|
||||
|
||||
# Plot the detectors
|
||||
for pos in det_pos.values():
|
||||
ax.scatter(pos[0], pos[1], s=120, c='k', marker='s', edgecolors='white', linewidths=1, zorder=3) # type: ignore
|
||||
# Ensure that the colors stay within the boundaries even if they are over or under the max/min values
|
||||
if t_or_theta == 't':
|
||||
norm = mcolors.Normalize(vmin=-ABS_SIGNIFICANCE_T_VALUE, vmax=ABS_SIGNIFICANCE_T_VALUE)
|
||||
elif t_or_theta == 'theta':
|
||||
norm = mcolors.Normalize(vmin=-ABS_SIGNIFICANCE_THETA_VALUE, vmax=ABS_SIGNIFICANCE_THETA_VALUE)
|
||||
|
||||
# Ensure that the colors stay within the boundaries even if they are over or under the max/min values
|
||||
if t_or_theta == 't':
|
||||
norm = mcolors.Normalize(vmin=-ABS_SIGNIFICANCE_T_VALUE, vmax=ABS_SIGNIFICANCE_T_VALUE)
|
||||
elif t_or_theta == 'theta':
|
||||
norm = mcolors.Normalize(vmin=-ABS_SIGNIFICANCE_THETA_VALUE, vmax=ABS_SIGNIFICANCE_THETA_VALUE)
|
||||
cmap: mcolors.Colormap = plt.get_cmap('seismic')
|
||||
|
||||
cmap: mcolors.Colormap = plt.get_cmap('seismic')
|
||||
# Plot connections with avg t-values
|
||||
for row in avg_df.itertuples():
|
||||
src: int = cast(int, row.Source) # type: ignore
|
||||
det: int = cast(int, row.Detector) # type: ignore
|
||||
tval: float = cast(float, row.t_or_theta) # type: ignore
|
||||
pval: float = cast(float, row.p_value) # type: ignore
|
||||
|
||||
|
||||
# Plot connections with avg t-values
|
||||
for row in avg_df.itertuples():
|
||||
src: int = cast(int, row.Source) # type: ignore
|
||||
det: int = cast(int, row.Detector) # type: ignore
|
||||
tval: float = cast(float, row.t_or_theta) # type: ignore
|
||||
pval: float = cast(float, row.p_value) # type: ignore
|
||||
if src in src_pos and det in det_pos:
|
||||
x = [src_pos[src][0], det_pos[det][0]]
|
||||
y = [src_pos[src][1], det_pos[det][1]]
|
||||
style = '-' if pval <= P_THRESHOLD else '--'
|
||||
ax.plot(x, y, linestyle=style, color=cmap(norm(tval)), linewidth=4, alpha=0.9, zorder=2) # type: ignore
|
||||
|
||||
# Format the Colorbar
|
||||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
||||
sm.set_array([])
|
||||
cbar = plt.colorbar(sm, ax=ax, shrink=0.85) # type: ignore
|
||||
cbar.set_label(f'Average {cond} {t_or_theta} value (hbo)', fontsize=11) # type: ignore
|
||||
|
||||
# Formatting the subplots
|
||||
ax.set_aspect('equal')
|
||||
ax.set_title(f"Average {t_or_theta} values for {cond} (HbO)", fontsize=14) # type: ignore
|
||||
ax.set_xlabel('X position (m)', fontsize=11) # type: ignore
|
||||
ax.set_ylabel('Y position (m)', fontsize=11) # type: ignore
|
||||
ax.grid(True, alpha=0.3) # type: ignore
|
||||
|
||||
# Set axis limits to be 1cm more than the optode positions
|
||||
all_x = [pos[0] for pos in src_pos.values()] + [pos[0] for pos in det_pos.values()]
|
||||
all_y = [pos[1] for pos in src_pos.values()] + [pos[1] for pos in det_pos.values()]
|
||||
ax.set_xlim(min(all_x)-0.01, max(all_x)+0.01)
|
||||
ax.set_ylim(min(all_y)-0.01, max(all_y)+0.01)
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
fig_individual_significances.append((f"Condition {cond}", fig))
|
||||
|
||||
if src in src_pos and det in det_pos:
|
||||
x = [src_pos[src][0], det_pos[det][0]]
|
||||
y = [src_pos[src][1], det_pos[det][1]]
|
||||
style = '-' if pval <= P_THRESHOLD else '--'
|
||||
ax.plot(x, y, linestyle=style, color=cmap(norm(tval)), linewidth=4, alpha=0.9, zorder=2) # type: ignore
|
||||
|
||||
# Format the Colorbar
|
||||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
||||
sm.set_array([])
|
||||
cbar = plt.colorbar(sm, ax=ax, shrink=0.85) # type: ignore
|
||||
cbar.set_label(f'Average {Reach} {t_or_theta} value (hbo)', fontsize=11) # type: ignore
|
||||
|
||||
# Formatting the subplots
|
||||
ax.set_aspect('equal')
|
||||
ax.set_title(f"Average {t_or_theta} values for {Reach} (HbO)", fontsize=14) # type: ignore
|
||||
ax.set_xlabel('X position (m)', fontsize=11) # type: ignore
|
||||
ax.set_ylabel('Y position (m)', fontsize=11) # type: ignore
|
||||
ax.grid(True, alpha=0.3) # type: ignore
|
||||
|
||||
# Set axis limits to be 1cm more than the optode positions
|
||||
all_x = [pos[0] for pos in src_pos.values()] + [pos[0] for pos in det_pos.values()]
|
||||
all_y = [pos[1] for pos in src_pos.values()] + [pos[1] for pos in det_pos.values()]
|
||||
ax.set_xlim(min(all_x)-0.01, max(all_x)+0.01)
|
||||
ax.set_ylim(min(all_y)-0.01, max(all_y)+0.01)
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
|
||||
return fig
|
||||
return fig_individual_significances
|
||||
|
||||
# TODO: Hardcoded
|
||||
def group_significance(
|
||||
@@ -1761,7 +1794,7 @@ def group_significance(
|
||||
Args:
|
||||
raw_haemo: Raw haemoglobin MNE object (used for optode positions)
|
||||
all_cha: DataFrame with columns including 'ID', 'Condition', 'p_value', 'theta', 'df', 'ch_name', 'Chroma'
|
||||
condition: condition prefix, e.g., 'Reach'
|
||||
condition: condition prefix, e.g., 'Activity'
|
||||
correction: p-value correction method ('fdr_bh' or 'bonferroni')
|
||||
|
||||
Returns:
|
||||
@@ -1919,7 +1952,12 @@ def group_significance(
|
||||
|
||||
def plot_glm_results(file_path, raw_haemo, glm_est, design_matrix):
|
||||
|
||||
fig_glms = [] # List to store figures
|
||||
|
||||
dm = design_matrix.copy()
|
||||
logger.info(design_matrix.shape)
|
||||
logger.info(design_matrix.columns)
|
||||
logger.info(design_matrix.head())
|
||||
|
||||
rois = dict(AllChannels=range(len(raw_haemo.ch_names)))
|
||||
conditions = design_matrix.columns
|
||||
@@ -1928,72 +1966,83 @@ def plot_glm_results(file_path, raw_haemo, glm_est, design_matrix):
|
||||
df_individual["ID"] = file_path
|
||||
# df_individual["theta"] = [t * 1.0e6 for t in df_individual["theta"]]
|
||||
|
||||
condition_of_interest="Reach"
|
||||
first_onset_for_cond = {}
|
||||
for onset, desc in zip(raw_haemo.annotations.onset, raw_haemo.annotations.description):
|
||||
if desc not in first_onset_for_cond:
|
||||
first_onset_for_cond[desc] = onset
|
||||
|
||||
# Filter for the condition of interest and FIR delays
|
||||
df_individual["isCondition"] = [condition_of_interest in n for n in df_individual["Condition"]]
|
||||
df_individual["isDelay"] = ["delay" in n for n in df_individual["Condition"]]
|
||||
df_individual = df_individual.query("isDelay and isCondition")
|
||||
|
||||
# Remove other conditions from design matrix
|
||||
dm_condition_cols = [col for col in dm.columns if condition_of_interest in col]
|
||||
dm_cond = dm[dm_condition_cols]
|
||||
# Get unique condition names from annotations (descriptions)
|
||||
unique_annotations = set(raw_haemo.annotations.description)
|
||||
|
||||
for cond in unique_annotations:
|
||||
logger.info(cond)
|
||||
df_individual_filtered = df_individual.copy()
|
||||
|
||||
# Filter for the condition of interest and FIR delays
|
||||
df_individual_filtered["isCondition"] = [cond in n for n in df_individual_filtered["Condition"]]
|
||||
df_individual_filtered["isDelay"] = ["delay" in n for n in df_individual_filtered["Condition"]]
|
||||
df_individual_filtered = df_individual_filtered.query("isDelay and isCondition")
|
||||
|
||||
# Add a numeric delay column
|
||||
def extract_delay_number(condition_str):
|
||||
# Extracts the number at the end of a string like 'Reach_delay_5'
|
||||
return int(condition_str.split("_")[-1])
|
||||
# Remove other conditions from design matrix
|
||||
dm_condition_cols = [col for col in dm.columns if cond in col]
|
||||
dm_cond = dm[dm_condition_cols]
|
||||
|
||||
# Add a numeric delay column
|
||||
def extract_delay_number(condition_str):
|
||||
# Extracts the number at the end of a string like 'Activity_delay_5'
|
||||
return int(condition_str.split("_")[-1])
|
||||
|
||||
df_individual["DelayNum"] = df_individual["Condition"].apply(extract_delay_number)
|
||||
df_individual_filtered["DelayNum"] = df_individual_filtered["Condition"].apply(extract_delay_number)
|
||||
|
||||
# Now separate and sort using numeric delay
|
||||
df_hbo = df_individual[df_individual["Chroma"] == "hbo"].sort_values("DelayNum")
|
||||
df_hbr = df_individual[df_individual["Chroma"] == "hbr"].sort_values("DelayNum")
|
||||
# Now separate and sort using numeric delay
|
||||
df_hbo = df_individual_filtered[df_individual_filtered["Chroma"] == "hbo"].sort_values("DelayNum")
|
||||
df_hbr = df_individual_filtered[df_individual_filtered["Chroma"] == "hbr"].sort_values("DelayNum")
|
||||
|
||||
vals_hbo = df_hbo["theta"].values
|
||||
vals_hbr = df_hbr["theta"].values
|
||||
|
||||
# Create the plot
|
||||
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(19, 10))
|
||||
|
||||
# Scale design matrix components using numpy arrays instead of pandas operations
|
||||
dm_cond_values = dm_cond.values
|
||||
dm_cond_scaled_hbo = dm_cond_values * vals_hbo.reshape(1, -1)
|
||||
dm_cond_scaled_hbr = dm_cond_values * vals_hbr.reshape(1, -1)
|
||||
|
||||
# Create time axis relative to stimulus onset
|
||||
time = dm_cond.index - np.ceil(raw_haemo.annotations.onset[1])
|
||||
|
||||
# Plot
|
||||
axes[0].plot(time, dm_cond_values)
|
||||
axes[1].plot(time, dm_cond_scaled_hbo)
|
||||
axes[2].plot(time, np.sum(dm_cond_scaled_hbo, axis=1), 'r')
|
||||
axes[2].plot(time, np.sum(dm_cond_scaled_hbr, axis=1), 'b')
|
||||
|
||||
# Format plots
|
||||
for ax in range(3):
|
||||
axes[ax].set_xlim(-5, 25)
|
||||
axes[ax].set_xlabel("Time (s)")
|
||||
axes[0].set_ylim(-0.2, 1.2)
|
||||
axes[1].set_ylim(-0.5, 1)
|
||||
axes[2].set_ylim(-0.5, 1)
|
||||
axes[0].set_title(f"FIR Model (Unscaled)")
|
||||
axes[1].set_title(f"FIR Components (Scaled by {condition_of_interest} GLM Estimates)")
|
||||
axes[2].set_title(f"Evoked Response ({condition_of_interest})")
|
||||
axes[0].set_ylabel("FIR Model")
|
||||
axes[1].set_ylabel("Oxyhaemoglobin (ΔμMol)")
|
||||
axes[2].set_ylabel("Haemoglobin (ΔμMol)")
|
||||
axes[2].legend(["Oxyhaemoglobin", "Deoxyhaemoglobin"])
|
||||
vals_hbo = df_hbo["theta"].values
|
||||
vals_hbr = df_hbr["theta"].values
|
||||
|
||||
# Create the plot
|
||||
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(19, 10))
|
||||
|
||||
# Scale design matrix components using numpy arrays instead of pandas operations
|
||||
dm_cond_values = dm_cond.values
|
||||
dm_cond_scaled_hbo = dm_cond_values * vals_hbo.reshape(1, -1)
|
||||
dm_cond_scaled_hbr = dm_cond_values * vals_hbr.reshape(1, -1)
|
||||
|
||||
# Create time axis relative to stimulus onset
|
||||
time = dm_cond.index - np.ceil(first_onset_for_cond.get(cond, 0))
|
||||
|
||||
# Plot
|
||||
axes[0].plot(time, dm_cond_values)
|
||||
axes[1].plot(time, dm_cond_scaled_hbo)
|
||||
axes[2].plot(time, np.sum(dm_cond_scaled_hbo, axis=1), 'r')
|
||||
axes[2].plot(time, np.sum(dm_cond_scaled_hbr, axis=1), 'b')
|
||||
|
||||
# Format plots
|
||||
for ax in range(3):
|
||||
axes[ax].set_xlim(-5, 25)
|
||||
axes[ax].set_xlabel("Time (s)")
|
||||
axes[0].set_ylim(-0.2, 1.2)
|
||||
axes[1].set_ylim(-0.5, 1)
|
||||
axes[2].set_ylim(-0.5, 1)
|
||||
axes[0].set_title(f"FIR Model (Unscaled)")
|
||||
axes[1].set_title(f"FIR Components (Scaled by {cond} GLM Estimates)")
|
||||
axes[2].set_title(f"Evoked Response ({cond})")
|
||||
axes[0].set_ylabel("FIR Model")
|
||||
axes[1].set_ylabel("Oxyhaemoglobin (ΔμMol)")
|
||||
axes[2].set_ylabel("Haemoglobin (ΔμMol)")
|
||||
axes[2].legend(["Oxyhaemoglobin", "Deoxyhaemoglobin"])
|
||||
|
||||
|
||||
print(f"Number of FIR bins: {len(vals_hbo)}")
|
||||
print(f"Mean theta (HbO): {np.mean(vals_hbo):.4f}")
|
||||
print(f"Sum of theta (HbO): {np.sum(vals_hbo):.4f}")
|
||||
print(f"Mean theta (HbR): {np.mean(vals_hbr):.4f}")
|
||||
print(f"Sum of theta (HbR): {np.sum(vals_hbr):.4f}")
|
||||
|
||||
return fig
|
||||
|
||||
print(f"Number of FIR bins: {len(vals_hbo)}")
|
||||
print(f"Mean theta (HbO): {np.mean(vals_hbo):.4f}")
|
||||
print(f"Sum of theta (HbO): {np.sum(vals_hbo):.4f}")
|
||||
print(f"Mean theta (HbR): {np.mean(vals_hbr):.4f}")
|
||||
print(f"Sum of theta (HbR): {np.sum(vals_hbr):.4f}")
|
||||
|
||||
fig_glms.append((f"Condition {cond}", fig))
|
||||
|
||||
return fig_glms
|
||||
|
||||
|
||||
def plot_3d_evoked_array(
|
||||
@@ -2871,9 +2920,12 @@ def process_participant(file_path, progress_callback=None):
|
||||
logger.info("11")
|
||||
|
||||
# Step 11: Get short / long channels
|
||||
short_chans = get_short_channels(raw_haemo, max_dist=0.015)
|
||||
fig_short_chans = short_chans.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Short Channels Only", show=False)
|
||||
fig_individual["short"] = fig_short_chans
|
||||
if SHORT_CHANNEL:
|
||||
short_chans = get_short_channels(raw_haemo, max_dist=0.015)
|
||||
fig_short_chans = short_chans.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Short Channels Only", show=False)
|
||||
fig_individual["short"] = fig_short_chans
|
||||
else:
|
||||
short_chans = None
|
||||
raw_haemo = get_long_channels(raw_haemo)
|
||||
if progress_callback: progress_callback(12)
|
||||
logger.info("12")
|
||||
@@ -2893,6 +2945,19 @@ def process_participant(file_path, progress_callback=None):
|
||||
logger.info("14")
|
||||
|
||||
# Step 14: Design Matrix
|
||||
events_to_remove = REMOVE_EVENTS
|
||||
|
||||
filtered_annotations = [ann for ann in raw.annotations if ann['description'] not in events_to_remove]
|
||||
|
||||
new_annot = Annotations(
|
||||
onset=[ann['onset'] for ann in filtered_annotations],
|
||||
duration=[ann['duration'] for ann in filtered_annotations],
|
||||
description=[ann['description'] for ann in filtered_annotations]
|
||||
)
|
||||
|
||||
# Set the new annotations
|
||||
raw_haemo.set_annotations(new_annot)
|
||||
|
||||
design_matrix, fig_design_matrix = make_design_matrix(raw_haemo, short_chans)
|
||||
fig_individual["Design Matrix"] = fig_design_matrix
|
||||
if progress_callback: progress_callback(15)
|
||||
@@ -2916,13 +2981,15 @@ def process_participant(file_path, progress_callback=None):
|
||||
|
||||
# Step 16: Plot GLM results
|
||||
fig_glm_result = plot_glm_results(file_path, raw_haemo, glm_est, design_matrix)
|
||||
fig_individual["GLM"] = fig_glm_result
|
||||
for name, fig in fig_glm_result:
|
||||
fig_individual[f"GLM {name}"] = fig
|
||||
if progress_callback: progress_callback(17)
|
||||
logger.info("17")
|
||||
|
||||
# Step 17: Plot channel significance
|
||||
fig_significance = individual_significance(raw_haemo, glm_est)
|
||||
fig_individual["Significance"] = fig_significance
|
||||
for name, fig in fig_significance:
|
||||
fig_individual[f"Significance {name}"] = fig
|
||||
if progress_callback: progress_callback(18)
|
||||
logger.info("18")
|
||||
|
||||
@@ -2975,6 +3042,9 @@ def process_participant(file_path, progress_callback=None):
|
||||
|
||||
contrast_dict[condition] = contrast_vector
|
||||
|
||||
if progress_callback: progress_callback(19)
|
||||
logger.info("19")
|
||||
|
||||
# Compute contrast results
|
||||
contrast_results = {}
|
||||
|
||||
@@ -2988,7 +3058,7 @@ def process_participant(file_path, progress_callback=None):
|
||||
|
||||
fig_bytes = convert_fig_dict_to_png_bytes(fig_individual)
|
||||
|
||||
if progress_callback: progress_callback(20)
|
||||
logger.info("20")
|
||||
|
||||
return raw_haemo, epochs, fig_bytes, cha, contrast_results, df_ind, design_matrix, AGE, GENDER, GROUP, True
|
||||
|
||||
# Not 3000 lines yay!
|
||||
return raw_haemo, epochs, fig_bytes, cha, contrast_results, df_ind, design_matrix, AGE, GENDER, GROUP, True
|
||||
Reference in New Issue
Block a user