5 Commits

Author SHA1 Message Date
1b78f1904d further variable changes 2026-01-23 11:25:01 -08:00
9779a63a9c crash and documentation fixes 2026-01-15 12:04:55 -08:00
2ecd357aca fix bad dependency 2026-01-14 23:57:54 -08:00
fe4e8904b4 improvements 2026-01-14 23:54:03 -08:00
473c945563 fix for desktop windows 2025-11-30 15:42:56 -08:00
9 changed files with 531 additions and 330 deletions

1
.gitignore vendored
View File

@@ -174,3 +174,4 @@ cython_debug/
# PyPI configuration file
.pypirc
/individual_images

View File

@@ -1,3 +1,22 @@
# Version 1.2.0
- Added new parameters to the right side of the screen
- These parameters include SHOW_OPTODE_NAMES, SECONDS_TO_STRIP_HR, MAX_LOW_HR, MAX_HIGH_HR, SMOOTHING_WINDOW_HR, HEART_RATE_WINDOW, BAD_CHANNELS_HANDLING, MAX_DIST, MIN_NEIGHBORS, L_TRANS_BANDWIDTH, H_TRANS_BANDWIDTH, RESAMPLE, RESAMPLE_FREQ, STIM_DUR, HRF_MODEL, HIGH_PASS, DRIFT_ORDER, FIR_DELAYS, MIN_ONSET, OVERSAMPLING, SHORT_CHANNEL_REGRESSION, NOISE_MODEL, BINS, and VERBOSITY.
- All the new parameters have default values matching the underlying values in version 1.1.7
- The order of the parameters have changed to match the order that the code runs when the Process button is clicked
- Moved TIME_WINDOW_START and TIME_WINDOW_END to the 'Other' category
- Fixed a bug causing SCI to not work when HEART_RATE was set to False
- Bad channels can now be dealt with by taking no action, removing them completely, or interpolating them based on their neighbours. Interpolation remains the default option
- Fixed an underlying deprecation warning
- Fixed an issue causing some overlay elements to not render on the brain for certain devices
- Fixed a crash when rendering some Inter-Group images with only one participant in a group
- Fixed a crash when attempting to fOLD channels without the fOLD dataset installed
- Lowered the number of rectangles in the progress bar to 24 after combining some actions
- Fixed the User Guide window to properly display information about the 24 stages and added a link to the Git wiki page
- MAX_WORKERS should now properly repect the value set
- Added a new CSV export option to be used by other applications
# Version 1.1.7
- Fixed a bug where having both a L_FREQ and H_FREQ would cause only the L_FREQ to be used

349
flares.py
View File

@@ -21,6 +21,7 @@ import os.path as op
import re
import traceback
from concurrent.futures import ProcessPoolExecutor, as_completed
from queue import Empty
# External library imports
import matplotlib.pyplot as plt
@@ -53,10 +54,10 @@ from scipy.signal import welch, butter, filtfilt # type: ignore
import pywt # type: ignore
import neurokit2 as nk # type: ignore
# Backen visualization needed to be defined for pyinstaller
# Backend visualization needed to be defined for pyinstaller
import pyvistaqt # type: ignore
#import vtkmodules.util.data_model
#import vtkmodules.util.execution_model
import vtkmodules.util.data_model
import vtkmodules.util.execution_model
# External library imports for mne
from mne import (
@@ -89,9 +90,10 @@ from mne_nirs.io.fold import fold_channel_specificity # type: ignore
from mne_nirs.preprocessing import peak_power # type: ignore
from mne_nirs.statistics._glm_level_first import RegressionResults # type: ignore
# Needs to be set for mne
os.environ["SUBJECTS_DIR"] = str(data_path()) + "/subjects" # type: ignore
# TODO: Tidy this up
FIXED_CATEGORY_COLORS = {
"SCI only": "skyblue",
"PSP only": "salmon",
@@ -112,10 +114,6 @@ FIXED_CATEGORY_COLORS = {
}
AGE: float
GENDER: str
# SECONDS_TO_STRIP: int
DOWNSAMPLE: bool
DOWNSAMPLE_FREQUENCY: int
@@ -123,21 +121,37 @@ TRIM: bool
SECONDS_TO_KEEP: float
OPTODE_PLACEMENT: bool
SHOW_OPTODE_NAMES: bool
HEART_RATE: bool
SHORT_CHANNEL: bool
SHORT_CHANNEL_THRESH: float
LONG_CHANNEL_THRESH: float
HEART_RATE: bool
SECONDS_TO_STRIP_HR: int
MAX_LOW_HR: int
MAX_HIGH_HR: int
SMOOTHING_WINDOW_HR: int
HEART_RATE_WINDOW: int
SCI: bool
SCI_TIME_WINDOW: int
SCI_THRESHOLD: float
SNR: bool
# SNR_TIME_WINDOW : int
# SNR_TIME_WINDOW : int #TODO: is this needed?
SNR_THRESHOLD: float
PSP: bool
PSP_TIME_WINDOW: int
PSP_THRESHOLD: float
BAD_CHANNELS_HANDLING: str
MAX_DIST: float
MIN_NEIGHBORS: int
TDDR: bool
WAVELET: bool
@@ -145,57 +159,41 @@ IQR: float
WAVELET_TYPE: str
WAVELET_LEVEL: int
HEART_RATE = True # True if heart rate should be calculated. This helps the SCI, PSP, and SNR methods to be more accurate.
SECONDS_TO_STRIP_HR =5 # Amount of seconds to temporarily strip from the data to calculate heart rate more effectively. Useful if participant removed cap while still recording.
MAX_LOW_HR = 40 # Any heart rate values lower than this will be set to this value.
MAX_HIGH_HR = 200 # Any heart rate values higher than this will be set to this value.
SMOOTHING_WINDOW_HR = 100 # Heart rate will be calculated as a rolling average over this many amount of samples.
HEART_RATE_WINDOW = 25 # Amount of BPM above and below the calculated average to use for a range of resting BPM.
ENHANCE_NEGATIVE_CORRELATION: bool
FILTER: bool
L_FREQ: float
H_FREQ: float
L_TRANS_BANDWIDTH: float
H_TRANS_BANDWIDTH: float
SHORT_CHANNEL: bool
SHORT_CHANNEL_THRESH: float
LONG_CHANNEL_THRESH: float
RESAMPLE: bool
RESAMPLE_FREQ: int
STIM_DUR: float
HRF_MODEL: str
DRIFT_MODEL: str
HIGH_PASS: float
DRIFT_ORDER: int
FIR_DELAYS: range
MIN_ONSET: int
OVERSAMPLING: int
REMOVE_EVENTS: list
SHORT_CHANNEL_REGRESSION: bool
NOISE_MODEL: str
BINS: int
N_JOBS: int
TIME_WINDOW_START: int
TIME_WINDOW_END: int
MAX_WORKERS: int
VERBOSITY: bool
DRIFT_MODEL: str
VERBOSITY = True
# FIXME: Shouldn't need each ordering - just order it before checking
FIXED_CATEGORY_COLORS = {
"SCI only": "skyblue",
"PSP only": "salmon",
"SNR only": "lightgreen",
"PSP + SCI": "orange",
"SCI + SNR": "violet",
"PSP + SNR": "gold",
"SCI + PSP": "orange",
"SNR + SCI": "violet",
"SNR + PSP": "gold",
"PSP + SNR + SCI": "gray",
"SCI + PSP + SNR": "gray",
"SCI + SNR + PSP": "gray",
"PSP + SCI + SNR": "gray",
"PSP + SNR + SCI": "gray",
"SNR + SCI + PSP": "gray",
"SNR + PSP + SCI": "gray",
}
AGE = 25
AGE = 25 # Assume 25 if not set from the GUI. This will result in a reasonable PPF
GENDER = ""
GROUP = "Default"
# These are parameters that are required for the analysis
REQUIRED_KEYS: dict[str, Any] = {
# "SECONDS_TO_STRIP": int,
@@ -262,7 +260,7 @@ PLATFORM_NAME = platform.system().lower()
# Configure logging to file with timestamps and realtime flush
if PLATFORM_NAME == 'darwin':
logging.basicConfig(
filename=os.path.join(os.path.dirname(sys.executable), "../../../fnirs_analysis.log"),
filename=os.path.join(os.path.dirname(sys.executable), "../../../fnirs_analysis.log"), # Needed to get out of the bundled application
level=logging.INFO,
format='%(asctime)s - %(processName)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
@@ -320,8 +318,6 @@ def set_metadata(file_path, metadata: dict[str, Any]) -> None:
val = file_metadata.get(key, None)
if val not in (None, '', [], {}, ()): # check for "empty" values
globals()[key] = val
from queue import Empty # This works with multiprocessing.Manager().Queue()
def gui_entry(config: dict[str, Any], gui_queue: Queue, progress_queue: Queue) -> None:
def forward_progress():
@@ -825,7 +821,7 @@ def get_hbo_hbr_picks(raw):
return hbo_picks, hbr_picks, hbo_wl, hbr_wl
def interpolate_fNIRS_bads_weighted_average(raw, bad_channels, max_dist=0.03, min_neighbors=2):
def interpolate_fNIRS_bads_weighted_average(raw, max_dist=0.03, min_neighbors=2):
"""
Interpolate bad fNIRS channels using a distance-weighted average of nearby good channels.
@@ -1117,17 +1113,17 @@ def mark_bads(raw, bad_sci, bad_snr, bad_psp):
def filter_the_data(raw_haemo):
# --- STEP 5: Filtering (0.010.2 Hz bandpass) ---
# --- STEP 5: Filtering (0.01-0.2 Hz bandpass) ---
fig_filter = raw_haemo.compute_psd(fmax=3).plot(
average=True, color="r", show=False, amplitude=True
)
if L_FREQ == 0 and H_FREQ != 0:
raw_haemo = raw_haemo.filter(l_freq=None, h_freq=H_FREQ, h_trans_bandwidth=0.02)
raw_haemo = raw_haemo.filter(l_freq=None, h_freq=H_FREQ, h_trans_bandwidth=H_TRANS_BANDWIDTH)
elif L_FREQ != 0 and H_FREQ == 0:
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=None, l_trans_bandwidth=0.002)
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=None, l_trans_bandwidth=L_TRANS_BANDWIDTH)
elif L_FREQ != 0 and H_FREQ != 0:
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=H_FREQ, l_trans_bandwidth=0.002, h_trans_bandwidth=0.02)
raw_haemo = raw_haemo.filter(l_freq=L_FREQ, h_freq=H_FREQ, l_trans_bandwidth=L_TRANS_BANDWIDTH, h_trans_bandwidth=H_TRANS_BANDWIDTH)
else:
print("No filter")
#raw_haemo = raw_haemo.filter(l_freq=None, h_freq=0.4, h_trans_bandwidth=0.2)
@@ -1258,7 +1254,7 @@ def epochs_calculations(raw_haemo, events, event_dict):
continue
data = evoked.data[picks_idx, :].mean(axis=0)
t_start, t_end = 0, 15
t_start, t_end = 0, 15 #TODO: Is this in seconds? or is it 1hz input that makes it 15s?
times_mask = (evoked.times >= t_start) & (evoked.times <= t_end)
data_segment = data[times_mask]
times_segment = evoked.times[times_mask]
@@ -1307,33 +1303,53 @@ def epochs_calculations(raw_haemo, events, event_dict):
def make_design_matrix(raw_haemo, short_chans):
raw_haemo.resample(1, npad="auto")
events_to_remove = REMOVE_EVENTS
filtered_annotations = [ann for ann in raw_haemo.annotations if ann['description'] not in events_to_remove]
new_annot = Annotations(
onset=[ann['onset'] for ann in filtered_annotations],
duration=[ann['duration'] for ann in filtered_annotations],
description=[ann['description'] for ann in filtered_annotations]
)
# Set the new annotations
raw_haemo.set_annotations(new_annot)
if RESAMPLE:
raw_haemo.resample(RESAMPLE_FREQ, npad="auto")
raw_haemo._data = raw_haemo._data * 1e6
try:
short_chans.resample(RESAMPLE_FREQ)
except:
pass
# 2) Create design matrix
if SHORT_CHANNEL:
short_chans.resample(1)
if SHORT_CHANNEL_REGRESSION:
design_matrix = make_first_level_design_matrix(
raw=raw_haemo,
hrf_model='fir',
stim_dur=0.5,
fir_delays=range(15),
stim_dur=STIM_DUR,
hrf_model=HRF_MODEL,
drift_model=DRIFT_MODEL,
high_pass=0.01,
oversampling=1,
min_onset=-125,
high_pass=HIGH_PASS,
drift_order=DRIFT_ORDER,
fir_delays=range(15),
add_regs=short_chans.get_data().T,
add_reg_names=short_chans.ch_names
add_reg_names=short_chans.ch_names,
min_onset=MIN_ONSET,
oversampling=OVERSAMPLING
)
else:
design_matrix = make_first_level_design_matrix(
raw=raw_haemo,
hrf_model='fir',
stim_dur=0.5,
fir_delays=range(15),
stim_dur=STIM_DUR,
hrf_model=HRF_MODEL,
drift_model=DRIFT_MODEL,
high_pass=0.01,
oversampling=1,
min_onset=-125,
high_pass=HIGH_PASS,
drift_order=DRIFT_ORDER,
fir_delays=range(15),
min_onset=MIN_ONSET,
oversampling=OVERSAMPLING
)
print(design_matrix.head())
@@ -2569,7 +2585,10 @@ def plot_fir_model_results(df, raw_haemo, dm, selected_event, l_bound, u_bound):
dm_cols_activity = np.where([f"{selected_event}" in c for c in dm.columns])[0]
dm = dm[[dm.columns[i] for i in dm_cols_activity]]
try:
lme = smf.mixedlm("theta ~ -1 + delay:TidyCond:Chroma", df, groups=df["ID"]).fit()
except:
lme = smf.ols("theta ~ -1 + delay:TidyCond:Chroma", df, groups=df["ID"]).fit() # type: ignore
df_sum = statsmodels_to_results(lme)
df_sum["delay"] = [int(n) for n in df_sum["delay"]]
@@ -3310,18 +3329,20 @@ def hr_calc(raw):
return fig, hr1, hr2, low, high
def process_participant(file_path, progress_callback=None):
fig_individual: dict[str, Figure] = {}
# Step 1: Load
# Step 1: Preprocessing
raw = load_snirf(file_path)
fig_raw = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Loaded Raw", show=False)
fig_individual["Loaded Raw"] = fig_raw
if progress_callback: progress_callback(1)
logger.info("1")
logger.info("Step 1 Completed.")
# Step 2: Trimming
if TRIM:
if hasattr(raw, 'annotations') and len(raw.annotations) > 0:
# Get time of first event
@@ -3329,17 +3350,16 @@ def process_participant(file_path, progress_callback=None):
trim_time = max(0, first_event_time - SECONDS_TO_KEEP) # Ensure we don't go negative
raw.crop(tmin=trim_time)
# Shift annotation onsets to match new t=0
import mne
ann = raw.annotations
ann_shifted = mne.Annotations(
ann_shifted = Annotations(
onset=ann.onset - trim_time, # shift to start at zero
duration=ann.duration,
description=ann.description
)
data = raw.get_data()
info = raw.info.copy()
raw = mne.io.RawArray(data, info)
raw = RawArray(data, info)
raw.set_annotations(ann_shifted)
logger.info(f"Trimmed raw data: start at {trim_time}s (5s before first event), t=0 at new start")
@@ -3349,185 +3369,178 @@ def process_participant(file_path, progress_callback=None):
fig_trimmed = raw.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Trimmed Raw", show=False)
fig_individual["Trimmed Raw"] = fig_trimmed
if progress_callback: progress_callback(2)
logger.info("2")
logger.info("Step 2 Completed.")
# Step 1.5: Verify optode positions
# Step 3: Verify Optode Placement
if OPTODE_PLACEMENT:
fig_optodes = raw.plot_sensors(show_names=True, to_sphere=True, show=False) # type: ignore
fig_optodes = raw.plot_sensors(show_names=SHOW_OPTODE_NAMES, to_sphere=True, show=False) # type: ignore
fig_individual["Plot Sensors"] = fig_optodes
if progress_callback: progress_callback(3)
logger.info("3")
logger.info("Step 3 Completed.")
# Step 2: Bad from SCI
# Step 4: Short/Long Channels
if SHORT_CHANNEL:
short_chans = get_short_channels(raw, max_dist=SHORT_CHANNEL_THRESH)
fig_short_chans = short_chans.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Short Channels Only", show=False)
fig_individual["short"] = fig_short_chans
else:
short_chans = None
get_long_channels(raw, min_dist=SHORT_CHANNEL_THRESH, max_dist=LONG_CHANNEL_THRESH) # Don't update the existing raw
if progress_callback: progress_callback(4)
logger.info("Step 4 Completed.")
# Step 5: Heart Rate
if HEART_RATE:
fig, hr1, hr2, low, high = hr_calc(raw)
fig_individual["PSD"] = fig
fig_individual['HeartRate_PSD'] = hr1
fig_individual['HeartRate_Time'] = hr2
if progress_callback: progress_callback(4)
logger.info("4")
if progress_callback: progress_callback(5)
logger.info("Step 5 Completed.")
# Step 6: Scalp Coupling Index
bad_sci = []
if SCI:
if HEART_RATE:
bad_sci, fig_sci_1, fig_sci_2 = calculate_scalp_coupling(raw, low, high)
else:
bad_sci, fig_sci_1, fig_sci_2 = calculate_scalp_coupling(raw)
fig_individual["SCI1"] = fig_sci_1
fig_individual["SCI2"] = fig_sci_2
if progress_callback: progress_callback(5)
logger.info("5")
if progress_callback: progress_callback(6)
logger.info("Step 6 Completed.")
# Step 2: Bad from SNR
# Step 7: Signal to Noise Ratio
bad_snr = []
if SNR:
bad_snr, fig_snr = calculate_signal_noise_ratio(raw)
fig_individual["SNR1"] = fig_snr
if progress_callback: progress_callback(6)
logger.info("6")
if progress_callback: progress_callback(7)
logger.info("Step 7 Completed.")
# Step 3: Bad from PSP
# Step 8: Peak Spectral Power
bad_psp = []
if PSP:
bad_psp, fig_psp1, fig_psp2 = calculate_peak_power(raw)
fig_individual["PSP1"] = fig_psp1
fig_individual["PSP2"] = fig_psp2
if progress_callback: progress_callback(7)
logger.info("7")
if progress_callback: progress_callback(8)
logger.info("Step 8 Completed.")
# Step 4: Mark the bad channels
# Step 9: Bad Channels Handling
if BAD_CHANNELS_HANDLING != "None":
raw, fig_dropped, fig_raw_before, bad_channels = mark_bads(raw, bad_sci, bad_snr, bad_psp)
if fig_dropped and fig_raw_before is not None:
fig_individual["fig2"] = fig_dropped
fig_individual["fig3"] = fig_raw_before
if progress_callback: progress_callback(8)
logger.info("8")
# Step 5: Interpolate the bad channels
if bad_channels:
raw, fig_raw_after = interpolate_fNIRS_bads_weighted_average(raw, bad_channels)
if BAD_CHANNELS_HANDLING == "Interpolate":
raw, fig_raw_after = interpolate_fNIRS_bads_weighted_average(raw, max_dist=MAX_DIST, min_neighbors=MIN_NEIGHBORS)
fig_individual["fig4"] = fig_raw_after
if progress_callback: progress_callback(9)
logger.info("9")
elif BAD_CHANNELS_HANDLING == "Remove":
pass
#TODO: Is there more needed here?
# Step 6: Optical Density
if progress_callback: progress_callback(9)
logger.info("Step 9 Completed.")
# Step 10: Optical Density
raw_od = optical_density(raw)
fig_raw_od = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="Optical Density", show=False)
fig_individual["Optical Density"] = fig_raw_od
if progress_callback: progress_callback(10)
logger.info("10")
logger.info("Step 10 Completed.")
# Step 7: TDDR
# Step 11: Temporal Derivative Distribution Repair Filtering
if TDDR:
raw_od = temporal_derivative_distribution_repair(raw_od)
fig_raw_od_tddr = raw_od.plot(duration=raw.times[-1], n_channels=raw.info['nchan'], title="After TDDR (Motion Correction)", show=False)
fig_individual["TDDR"] = fig_raw_od_tddr
if progress_callback: progress_callback(11)
logger.info("11")
logger.info("Step 11 Completed.")
# Step 12: Wavelet Filtering
if WAVELET:
raw_od, fig = calculate_and_apply_wavelet(raw_od)
fig_individual["Wavelet"] = fig
if progress_callback: progress_callback(12)
logger.info("12")
logger.info("Step 12 Completed.")
# Step 8: BLL
# Step 13: Haemoglobin Concentration
raw_haemo = beer_lambert_law(raw_od, ppf=calculate_dpf(file_path))
fig_raw_haemo_bll = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="HbO and HbR Signals", show=False)
fig_individual["BLL"] = fig_raw_haemo_bll
if progress_callback: progress_callback(13)
logger.info("13")
logger.info("Step 13 Completed.")
# Step 9: ENC
# Step 14: Enhance Negative Correlation
if ENHANCE_NEGATIVE_CORRELATION:
raw_haemo = enhance_negative_correlation(raw_haemo)
fig_raw_haemo_enc = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="HbO and HbR Signals", show=False)
fig_raw_haemo_enc = raw_haemo.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Enhance Negative Correlation", show=False)
fig_individual["ENC"] = fig_raw_haemo_enc
if progress_callback: progress_callback(14)
logger.info("14")
logger.info("Step 14 Completed.")
# Step 10: Filter
# Step 15: Filter
if FILTER:
raw_haemo, fig_filter, fig_raw_haemo_filter = filter_the_data(raw_haemo)
fig_individual["filter1"] = fig_filter
fig_individual["filter2"] = fig_raw_haemo_filter
if progress_callback: progress_callback(15)
logger.info("15")
logger.info("Step 15 Completed.")
# Step 11: Get short / long channels
if SHORT_CHANNEL:
short_chans = get_short_channels(raw_haemo, max_dist=SHORT_CHANNEL_THRESH)
fig_short_chans = short_chans.plot(duration=raw_haemo.times[-1], n_channels=raw_haemo.info['nchan'], title="Short Channels Only", show=False)
fig_individual["short"] = fig_short_chans
else:
short_chans = None
raw_haemo = get_long_channels(raw_haemo, min_dist=SHORT_CHANNEL_THRESH, max_dist=LONG_CHANNEL_THRESH)
if progress_callback: progress_callback(16)
logger.info("16")
# Step 12: Events from annotations
# Step 16: Extracting Events
events, event_dict = events_from_annotations(raw_haemo)
fig_events = plot_events(events, event_id=event_dict, sfreq=raw_haemo.info["sfreq"], show=False)
fig_individual["events"] = fig_events
if progress_callback: progress_callback(17)
logger.info("17")
if progress_callback: progress_callback(16)
logger.info("Step 16 Completed.")
# Step 13: Epoch calculations
# Step 17: Epoch Calculations
epochs, fig_epochs = epochs_calculations(raw_haemo, events, event_dict)
for name, fig in fig_epochs: # Unpack the tuple here
fig_individual[f"epochs_{name}"] = fig # Store only the figure, not the name
if progress_callback: progress_callback(18)
logger.info("18")
# Step 14: Design Matrix
events_to_remove = REMOVE_EVENTS
filtered_annotations = [ann for ann in raw.annotations if ann['description'] not in events_to_remove]
new_annot = Annotations(
onset=[ann['onset'] for ann in filtered_annotations],
duration=[ann['duration'] for ann in filtered_annotations],
description=[ann['description'] for ann in filtered_annotations]
)
# Set the new annotations
raw_haemo.set_annotations(new_annot)
for name, fig in fig_epochs:
fig_individual[f"epochs_{name}"] = fig
if progress_callback: progress_callback(17)
logger.info("Step 17 Completed.")
# Step 18: Design Matrix
design_matrix, fig_design_matrix = make_design_matrix(raw_haemo, short_chans)
fig_individual["Design Matrix"] = fig_design_matrix
if progress_callback: progress_callback(19)
logger.info("19")
if progress_callback: progress_callback(18)
logger.info("Step 18 Completed.")
# Step 15: Run GLM
glm_est = run_glm(raw_haemo, design_matrix)
# Step 19: Run GLM
glm_est = run_glm(raw_haemo, design_matrix, noise_model=NOISE_MODEL, bins=BINS, n_jobs=N_JOBS, verbose=VERBOSITY)
# Not used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\nilearn\glm\contrasts.py
# Yes used AppData\Local\Packages\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\LocalCache\local-packages\Python313\site-packages\mne_nirs\utils\_io.py
# The p-value is calculated from this t-statistic using the Students t-distribution with appropriate degrees of freedom.
# The p-value is calculated from this t-statistic using the Student's t-distribution with appropriate degrees of freedom.
# p_value = 2 * stats.t.cdf(-abs(t_statistic), df)
# It is a two-tailed p-value.
# It says how likely it is to observe the effect you did (or something more extreme) if the true effect was zero (null hypothesis).
# A small p-value (e.g., < 0.05) suggests the effect is unlikely to be zero — its "statistically significant."
# A small p-value (e.g., < 0.05) suggests the effect is unlikely to be zero — it's "statistically significant."
# A large p-value means the data do not provide strong evidence that the effect is different from zero.
if progress_callback: progress_callback(20)
logger.info("20")
if progress_callback: progress_callback(19)
logger.info("19")
# Step 16: Plot GLM results
# Step 20: Generate GLM Results
fig_glm_result = plot_glm_results(file_path, raw_haemo, glm_est, design_matrix)
for name, fig in fig_glm_result:
fig_individual[f"GLM {name}"] = fig
if progress_callback: progress_callback(21)
logger.info("21")
if progress_callback: progress_callback(20)
logger.info("20")
# Step 17: Plot channel significance
# Step 21: Generate Channel Significance
fig_significance = individual_significance(raw_haemo, glm_est)
for name, fig in fig_significance:
fig_individual[f"Significance {name}"] = fig
if progress_callback: progress_callback(22)
logger.info("22")
if progress_callback: progress_callback(21)
logger.info("21")
# Step 18: cha, con, roi
# Step 22: Generate Channel, Region of Interest, and Contrast Results
cha = glm_est.to_dataframe()
# HACK: Comment out line 588 (self._renderer.show()) in _brain.py from MNE
@@ -3580,10 +3593,10 @@ def process_participant(file_path, progress_callback=None):
contrast_dict[condition] = contrast_vector
if progress_callback: progress_callback(23)
logger.info("23")
if progress_callback: progress_callback(22)
logger.info("22")
# Compute contrast results
# Step 23: Compute Contrast Results
contrast_results = {}
for cond, contrast_vector in contrast_dict.items():
@@ -3594,10 +3607,10 @@ def process_participant(file_path, progress_callback=None):
cha["ID"] = file_path
if progress_callback: progress_callback(24)
logger.info("24")
if progress_callback: progress_callback(23)
logger.info("23")
# Step 24: Finishing Up
fig_bytes = convert_fig_dict_to_png_bytes(fig_individual)
sanitize_paths_for_pickle(raw_haemo, epochs)

366
main.py
View File

@@ -22,11 +22,11 @@ import subprocess
from pathlib import Path, PurePosixPath
from datetime import datetime
from multiprocessing import Process, current_process, freeze_support, Manager
import numpy as np
import pandas as pd
from enum import Enum, auto
# External library imports
import numpy as np
import pandas as pd
import psutil
import requests
@@ -46,7 +46,7 @@ from PySide6.QtGui import QAction, QKeySequence, QIcon, QIntValidator, QDoubleVa
from PySide6.QtSvgWidgets import QSvgWidget # needed to show svgs when app is not frozen
CURRENT_VERSION = "1.0.0"
CURRENT_VERSION = "1.2.0"
API_URL = "https://git.research.dezeeuw.ca/api/v1/repos/tyler/flares/releases"
API_URL_SECONDARY = "https://git.research2.dezeeuw.ca/api/v1/repos/tyler/flares/releases"
@@ -58,7 +58,6 @@ SECTIONS = [
{
"title": "Preprocessing",
"params": [
# {"name": "SECONDS_TO_STRIP", "default": 0, "type": int, "help": "Seconds to remove from beginning of all loaded snirf files. Setting this to 0 will remove nothing from the files."},
{"name": "DOWNSAMPLE", "default": True, "type": bool, "help": "Should the snirf files be downsampled? If this is set to True, DOWNSAMPLE_FREQUENCY will be used as the target frequency to downsample to."},
{"name": "DOWNSAMPLE_FREQUENCY", "default": 25, "type": int, "help": "Frequency (Hz) to downsample to. If this is set higher than the input data, new data will be interpolated. Only used if DOWNSAMPLE is set to True"},
]
@@ -74,12 +73,26 @@ SECTIONS = [
"title": "Verify Optode Placement",
"params": [
{"name": "OPTODE_PLACEMENT", "default": True, "type": bool, "help": "Generate an image for each participant outlining their optode placement."},
{"name": "SHOW_OPTODE_NAMES", "default": True, "type": bool, "help": "Should the optode names be written next to their location or not."},
]
},
{
"title": "Short/Long Channels",
"params": [
{"name": "SHORT_CHANNEL", "default": True, "type": bool, "help": "This should be set to True if the data has a short channel present in the data."},
{"name": "SHORT_CHANNEL_THRESH", "default": 0.015, "type": float, "help": "The maximum distance the short channel can be in metres."},
{"name": "LONG_CHANNEL_THRESH", "default": 0.045, "type": float, "help": "The maximum distance the long channel can be in metres."},
]
},
{
"title": "Heart Rate",
"params": [
{"name": "HEART_RATE", "default": True, "type": bool, "help": "Attempt to calculate the participants heart rate."},
{"name": "SECONDS_TO_STRIP_HR", "default": 5, "type": int, "help": "Will remove this many seconds from the start and end of the file. Useful if recording before cap is firmly placed, or participant removes cap while still recording."},
{"name": "MAX_LOW_HR", "default": 40, "type": int, "help": "Any heart rate windows that average below this value will be rounded up to this value."},
{"name": "MAX_HIGH_HR", "default": 200, "type": int, "help": "Any heart rate windows that average above this value will be rounded down to this value."},
{"name": "SMOOTHING_WINDOW_HR", "default": 100, "type": int, "help": "How many individual data points to smooth into a single window."},
{"name": "HEART_RATE_WINDOW", "default": 25, "type": int, "help": "Used for visualization. Shows the range of the calculated heart rate +- this value."},
]
},
{
@@ -94,14 +107,12 @@ SECTIONS = [
"title": "Signal to Noise Ratio",
"params": [
{"name": "SNR", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Signal to Noise Ratio. This metric calculates how much of the observed signal was noise versus how much of it was a useful signal."},
# {"name": "SNR_TIME_WINDOW", "default": -1, "type": int, "help": "SNR time window."},
{"name": "SNR_THRESHOLD", "default": 5.0, "type": float, "help": "SNR threshold (dB). A typical scale would be 0-25, but it is possible for values to be both above and below this range. Higher values correspond to a better signal. If SNR is True, any channels lower than this value will be marked as bad."},
]
},
{
"title": "Peak Spectral Power",
"params": [
{"name": "PSP", "default": True, "type": bool, "help": "Calculate and mark channels bad based on their Peak Spectral Power. This metric calculates the amplitude or strength of a frequency component that is most prominent in a particular frequency range or spectrum."},
{"name": "PSP_TIME_WINDOW", "default": 3, "type": int, "help": "Independent PSP calculations will be perfomed in a time window for the duration of the value provided, until the end of the file is reached."},
{"name": "PSP_THRESHOLD", "default": 0.1, "type": float, "help": "PSP threshold. A typical scale would be 0-0.5, but it is possible for values to be above this range. Higher values correspond to a better signal. If PSP is True, any channels lower than this value will be marked as bad."},
@@ -110,15 +121,15 @@ SECTIONS = [
{
"title": "Bad Channels Handling",
"params": [
# {"name": "NOT_IMPLEMENTED", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."},
# {"name": "NOT_IMPLEMENTED", "default": 3, "type": int, "help": "PSP time window."},
# {"name": "NOT_IMPLEMENTED", "default": 0.1, "type": float, "help": "PSP threshold."},
{"name": "BAD_CHANNELS_HANDLING", "default": [], "type": list, "options": ["Interpolate", "Remove", "None"], "exclusive": True, "help": "How should we deal with the bad channels that occurred? Note: Some analysis options will only work when this is set to 'Interpolate'."},
{"name": "MAX_DIST", "default": 0.03, "type": float, "help": "The maximum distance to look for neighbours when interpolating. Used only when BAD_CHANNELS_HANDLING is set to 'Interpolate'."},
{"name": "MIN_NEIGHBORS", "default": 2, "type": int, "help": "The minimumn amount of neighbours needed within the MAX_DIST parameter. Used only when BAD_CHANNELS_HANDLING is set to 'Interpolate'."},
]
},
{
"title": "Optical Density",
"params": [
# Intentionally empty (TODO)
# NOTE: Intentionally empty
]
},
{
@@ -139,7 +150,7 @@ SECTIONS = [
{
"title": "Haemoglobin Concentration",
"params": [
# Intentionally empty (TODO)
# NOTE: Intentionally empty
]
},
{
@@ -154,24 +165,18 @@ SECTIONS = [
{"name": "FILTER", "default": True, "type": bool, "help": "Filter the data."},
{"name": "L_FREQ", "default": 0.005, "type": float, "help": "Any frequencies lower than this value will be removed."},
{"name": "H_FREQ", "default": 0.3, "type": float, "help": "Any frequencies higher than this value will be removed."},
{"name": "L_TRANS_BANDWIDTH", "default": 0.002, "type": float, "help": "How wide the transitional period should be so the data doesn't just drop off on the lower bound."},
{"name": "H_TRANS_BANDWIDTH", "default": 0.002, "type": float, "help": "How wide the transitional period should be so the data doesn't just drop off on the upper bound."},
]
},
{
"title": "Short/Long Channels",
"params": [
{"name": "SHORT_CHANNEL", "default": True, "type": bool, "help": "This should be set to True if the data has a short channel present in the data."},
{"name": "SHORT_CHANNEL_THRESH", "default": 0.015, "type": float, "help": "The maximum distance the short channel can be in metres."},
{"name": "LONG_CHANNEL_THRESH", "default": 0.045, "type": float, "help": "The maximum distance the long channel can be in metres."},
]
},
{
"title": "Extracting Events",
"title": "Extracting Events*",
"params": [
#{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."},
]
},
{
"title": "Epoch Calculations",
"title": "Epoch Calculations*",
"params": [
#{"name": "EVENTS", "default": True, "type": bool, "help": "Calculate Peak Spectral Power."},
]
@@ -179,18 +184,27 @@ SECTIONS = [
{
"title": "Design Matrix",
"params": [
{"name": "RESAMPLE", "default": True, "type": bool, "help": "The length of your stimulus."},
{"name": "RESAMPLE_FREQ", "default": 1, "type": int, "help": "The length of your stimulus."},
{"name": "STIM_DUR", "default": 0.5, "type": float, "help": "The length of your stimulus."},
{"name": "HRF_MODEL", "default": "fir", "type": str, "help": "Specifies the hemodynamic response function."},
{"name": "DRIFT_MODEL", "default": "cosine", "type": str, "help": "Specifies the desired drift model."},
{"name": "HIGH_PASS", "default": 0.01, "type": float, "help": "High-pass frequency in case of a cosine model (in Hz)."},
{"name": "DRIFT_ORDER", "default": 1, "type": int, "help": "Order of the drift model (in case it is polynomial)"},
{"name": "FIR_DELAYS", "default": "None", "type": range, "help": "In case of FIR design, yields the array of delays used in the FIR model (in scans)."},
{"name": "MIN_ONSET", "default": -24, "type": int, "help": "Minimal onset relative to frame times (in seconds)"},
{"name": "OVERSAMPLING", "default": 50, "type": int, "help": "Oversampling factor used in temporal convolutions."},
{"name": "REMOVE_EVENTS", "default": "None", "type": list, "help": "Remove events matching the names provided before generating the Design Matrix"},
{"name": "DRIFT_MODEL", "default": "cosine", "type": str, "help": "Drift model for GLM."},
# {"name": "DURATION_BETWEEN_ACTIVITIES", "default": 35, "type": int, "help": "Time between activities (s)."},
# {"name": "SHORT_CHANNEL_REGRESSION", "default": True, "type": bool, "help": "Use short channel regression."},
{"name": "SHORT_CHANNEL_REGRESSION", "default": True, "type": bool, "help": "Whether to use short channel regression and regress out the short channels. Requires SHORT_CHANNELS to be True and at least one short channel to be found."},
]
},
{
"title": "General Linear Model",
"params": [
{"name": "TIME_WINDOW_START", "default": "0", "type": int, "help": "Where to start averaging the fir model bins. Only affects the significance and contrast images."},
{"name": "TIME_WINDOW_END", "default": "15", "type": int, "help": "Where to end averaging the fir model bins. Only affects the significance and contrast images."},
#{"name": "N_JOBS", "default": 1, "type": int, "help": "Number of jobs for GLM processing."},
{"name": "NOISE_MODEL", "default": "ar1", "type": str, "help": "Number of jobs for GLM processing."},
{"name": "BINS", "default": 0, "type": int, "help": "Number of jobs for GLM processing."},
{"name": "N_JOBS", "default": 1, "type": int, "help": "Number of jobs for GLM processing."},
]
},
{
@@ -202,7 +216,10 @@ SECTIONS = [
{
"title": "Other",
"params": [
{"name": "MAX_WORKERS", "default": 4, "type": int, "help": "Number of files to be processed at once. Lowering this value may help on underpowered systems."},
{"name": "TIME_WINDOW_START", "default": 0, "type": int, "help": "Where to start averaging the fir model bins. Only affects the significance and contrast images."},
{"name": "TIME_WINDOW_END", "default": 15, "type": int, "help": "Where to end averaging the fir model bins. Only affects the significance and contrast images."},
{"name": "MAX_WORKERS", "default": 4, "type": str, "help": "Number of files to be processed at once. Setting this to a small integer value may help on underpowered systems. Remove the value to use an automatic amount."},
{"name": "VERBOSITY", "default": False, "type": bool, "help": "True will log lots of debugging information to the log file. False will only log required data."},
]
},
]
@@ -483,29 +500,38 @@ class UserGuideWindow(QWidget):
layout = QVBoxLayout()
label = QLabel("Progress Bar Stages:", self)
label2 = QLabel("Stage 1: Load the snirf file\n"
"Stage 2: Check the optode positions\n"
"Stage 3: Scalp Coupling Index\n"
"Stage 4: Signal to Noise Ratio\n"
"Stage 5: Peak Spectral Power\n"
"Stage 6: Identify bad channels\n"
"Stage 7: Interpolate bad channels\n"
"Stage 8: Optical Density\n"
"Stage 9: Temporal Derivative Distribution Repair\n"
"Stage 10: Beer Lambert Law\n"
"Stage 11: Heart Rate Filtering\n"
"Stage 12: Get Short/Long Channels\n"
"Stage 13: Calculate Events from Annotations\n"
"Stage 14: Epoch Calculations\n"
"Stage 15: Design Matrix\n"
"Stage 16: General Linear Model\n"
"Stage 17: Generate Plots from the GLM\n"
"Stage 18: Individual Significance\n"
"Stage 19: Channel, Region of Interest, and Contrast Results\n"
"Stage 20: Image Conversion\n", self)
label2 = QLabel("Stage 1: Preprocessing\n"
"Stage 2: Trimming\n"
"Stage 3: Verify Optode Placement\n"
"Stage 4: Short/Long Cannels\n"
"Stage 5: Heart Rate\n"
"Stage 6: Scalp Coupling Index\n"
"Stage 7: Signal to Noise Ratio\n"
"Stage 8: Peak Spectral Power\n"
"Stage 9: Bad Channels Handling\n"
"Stage 10: Optical Density\n"
"Stage 11: Temporal Derivative Distribution Repair Filtering\n"
"Stage 12: Wavelet Filtering\n"
"Stage 13: Haemoglobin Concentration\n"
"Stage 14: Enhance Negative Correlation\n"
"Stage 15: Filter\n"
"Stage 16: Extracting Events\n"
"Stage 17: Epoch Calculations\n"
"Stage 18: Design Matrix\n"
"Stage 19: General Linear Model\n"
"Stage 20: Generate GLM Results\n"
"Stage 21: Generate Channel Significance\n"
"Stage 22: Generate Channel, Region of Interest, and Contrast Results\n"
"Stage 23: Compute Contrast Results\n"
"Stage 24: Finishing Up\n", self)
label3 = QLabel("For more information, visit the Git wiki page <a href='https://git.research.dezeeuw.ca/tyler/flares/wiki'>here</a>.", self)
label3.setTextFormat(Qt.TextFormat.RichText)
label3.setTextInteractionFlags(Qt.TextInteractionFlag.TextBrowserInteraction)
label3.setOpenExternalLinks(True)
layout.addWidget(label)
layout.addWidget(label2)
layout.addWidget(label3)
self.setLayout(layout)
@@ -742,15 +768,23 @@ class UpdateOptodesWindow(QWidget):
write_raw_snirf(raw, save_path)
class EventUpdateMode(Enum):
WRITE_SNIRF = auto() # destructive
WRITE_JSON = auto() # non-destructive
class UpdateEventsWindow(QWidget):
def __init__(self, parent=None):
def __init__(self, parent=None, mode=EventUpdateMode.WRITE_SNIRF, caller=None):
super().__init__(parent, Qt.WindowType.Window)
self.mode = mode
self.caller = caller or self.__class__.__name__
self.setWindowTitle("Update event markers")
self.resize(760, 200)
print("INIT MODE:", mode)
self.label_file_a = QLabel("SNIRF file:")
self.line_edit_file_a = QLineEdit()
self.line_edit_file_a.setReadOnly(True)
@@ -1051,46 +1085,55 @@ class UpdateEventsWindow(QWidget):
QMessageBox.warning(self, "No SNIRF file", "Please select a SNIRF file.")
return
boris_obs = self.boris_data["observations"][selected_obs]
# --- Extract videos + delays ---
files = boris_obs.get("file", {})
offsets = boris_obs.get("media_info", {}).get("offset", {})
videos = {}
for key, path in files.items():
if path: # only include videos that exist
delay = offsets.get(key, 0.0) # default 0 if missing
videos[key] = {"file": path, "delay": delay}
base_name = os.path.splitext(os.path.basename(file_a))[0]
if self.mode == EventUpdateMode.WRITE_SNIRF:
# Open save dialog for SNIRF
base_name = os.path.splitext(os.path.basename(file_a))[0]
suggested_name = f"{base_name}_{suffix}.snirf"
# Open save dialog
save_path, _ = QFileDialog.getSaveFileName(
self,
"Save SNIRF File As",
suggested_name,
"SNIRF Files (*.snirf)"
)
if not save_path:
print("Save cancelled.")
print("SNIRF save cancelled.")
return
if not save_path.lower().endswith(".snirf"):
save_path += ".snirf"
try:
raw = read_raw_snirf(snirf_path, preload=True)
onsets = []
durations = []
descriptions = []
raw = read_raw_snirf(file_a, preload=True)
# --- Align BORIS events to SNIRF ---
boris_events = boris_obs.get("events", [])
onsets, durations, descriptions = [], [], []
open_events = {} # label -> list of start times
label_counts = {}
used_times = set()
sfreq = raw.info['sfreq'] # sampling frequency in Hz
sfreq = raw.info['sfreq']
min_shift = 1.0 / sfreq
max_attempts = 10
for event in boris_events:
if not isinstance(event, list) or len(event) < 3:
continue
event_time = event[0]
label = event[2]
count = label_counts.get(label, 0) + 1
label_counts[label] = count
@@ -1098,74 +1141,84 @@ class UpdateEventsWindow(QWidget):
open_events[label] = []
if count % 2 == 1:
# Odd occurrence = start event
open_events[label].append(event_time)
else:
# Even occurrence = end event
if open_events[label]:
matched_start = open_events[label].pop(0)
duration = event_time - matched_start
start_time = open_events[label].pop(0)
duration = event_time - start_time
if duration <= 0:
print(f"Warning: Duration for {label} is non-positive ({duration}). Skipping.")
continue
shifted_start = matched_start + time_shift
adjusted_time = shifted_start
adjusted_time = start_time + time_shift
attempts = 0
while round(adjusted_time, 6) in used_times and attempts < max_attempts:
adjusted_time += min_shift
attempts += 1
if attempts == max_attempts:
print(f"Warning: Couldn't find unique time for {label} @ {matched_start}s. Skipping.")
continue
adjusted_time = round(adjusted_time, 6)
used_times.add(adjusted_time)
print(f"Adding event: {label} @ {adjusted_time:.3f}s for {duration:.3f}s")
onsets.append(adjusted_time)
durations.append(duration)
descriptions.append(label)
else:
print(f"Warning: Unmatched end for label '{label}' at {event_time:.3f}s. Skipping.")
# Optionally warn about any unmatched starts left open
# Handle unmatched starts
for label, starts in open_events.items():
for start_time in starts:
shifted_start = start_time + time_shift
adjusted_time = shifted_start
adjusted_time = start_time + time_shift
attempts = 0
while round(adjusted_time, 6) in used_times and attempts < max_attempts:
adjusted_time += min_shift
attempts += 1
if attempts == max_attempts:
print(f"Warning: Couldn't find unique time for unmatched start {label} @ {start_time}s. Skipping.")
continue
adjusted_time = round(adjusted_time, 6)
used_times.add(adjusted_time)
print(f"Warning: Unmatched start for label '{label}' at {start_time:.3f}s. Adding with duration 0.")
onsets.append(adjusted_time)
durations.append(0.0)
descriptions.append(label)
new_annotations = Annotations(onset=onsets, duration=durations, description=descriptions)
raw.set_annotations(new_annotations)
write_raw_snirf(raw, save_path)
QMessageBox.information(self, "Success", "SNIRF file updated with aligned BORIS events.")
except Exception as e:
QMessageBox.critical(self, "Error", f"Failed to update SNIRF file:\n{e}")
elif self.mode == EventUpdateMode.WRITE_JSON:
# Open save dialog for JSON
base_name = os.path.splitext(os.path.basename(file_a))[0]
suggested_name = f"{base_name}_{suffix}_alignment.json"
save_path, _ = QFileDialog.getSaveFileName(
self,
"Save Event Alignment JSON As",
suggested_name,
"JSON Files (*.json)"
)
if not save_path:
print("JSON save cancelled.")
return
if not save_path.lower().endswith(".json"):
save_path += ".json"
# Build JSON dict
json_data = {
"observation": selected_obs,
"snirf_anchor": {"label": snirf_label, "time": snirf_anchor_time},
"boris_anchor": {"label": boris_label, "time": boris_anchor_time},
"time_shift": time_shift,
"videos": videos
}
# Write JSON
try:
with open(save_path, "w", encoding="utf-8") as f:
json.dump(json_data, f, indent=4)
QMessageBox.information(self, "Success", f"Event alignment saved to:\n{save_path}")
except Exception as e:
QMessageBox.critical(self, "Error", f"Failed to write JSON:\n{e}")
def update_optode_positions(self, file_a, file_b, save_path):
@@ -1197,6 +1250,47 @@ class UpdateEventsWindow(QWidget):
write_raw_snirf(raw, save_path)
def _apply_events_to_snirf(self, raw, new_annotations, save_path):
raw.set_annotations(new_annotations)
write_raw_snirf(raw, save_path)
def _write_event_mapping_json(
self,
file_a,
file_b,
selected_obs,
snirf_anchor,
boris_anchor,
time_shift,
mapped_events,
save_path
):
import json
from datetime import datetime
import os
payload = {
"source": {
"called_from": self.caller,
"snirf_file": os.path.basename(file_a),
"boris_file": os.path.basename(file_b),
"observation": selected_obs
},
"alignment": {
"snirf_anchor": snirf_anchor,
"boris_anchor": boris_anchor,
"time_shift_seconds": time_shift
},
"events": mapped_events,
"created_at": datetime.utcnow().isoformat() + "Z"
}
with open(save_path, "w", encoding="utf-8") as f:
json.dump(payload, f, indent=2)
return save_path
class ProgressBubble(QWidget):
"""
A clickable widget displaying a progress bar made of colored rectangles and a label.
@@ -1229,7 +1323,7 @@ class ProgressBubble(QWidget):
self.progress_layout = QHBoxLayout()
self.rects = []
for _ in range(25):
for _ in range(24):
rect = QFrame()
rect.setFixedSize(10, 18)
rect.setStyleSheet("background-color: white; border: 1px solid gray;")
@@ -1358,6 +1452,11 @@ class ParamSection(QWidget):
widget.setValidator(QDoubleValidator())
widget.setText(str(param["default"]))
elif param["type"] == list:
if param.get("exclusive", True):
widget = QComboBox()
widget.addItems(param.get("options", []))
widget.setCurrentText(str(param.get("default", "<None Selected>")))
else:
widget = self._create_multiselect_dropdown(None)
else:
widget = QLineEdit()
@@ -1466,7 +1565,10 @@ class ParamSection(QWidget):
if expected_type == bool:
values[name] = widget.currentText() == "True"
elif expected_type == list:
if isinstance(widget, FullClickComboBox):
values[name] = [x.strip() for x in widget.lineEdit().text().split(",") if x.strip()]
elif isinstance(widget, QComboBox):
values[name] = widget.currentText()
else:
raw_text = widget.text()
try:
@@ -2422,9 +2524,23 @@ class ParticipantFoldChannelsWidget(QWidget):
for idx in selected_indexes:
if idx == 0:
try:
flares.fold_channels(haemo_obj)
except:
msg_box = QMessageBox()
msg_box.setIcon(QMessageBox.Icon.Critical)
msg_box.setWindowTitle("Something went wrong!")
message = (
"Unable to locate the fOLD files!<br><br>"
f"Please download the 'Supplementary' folder from <a href='https://github.com/nirx/fOLD-public'>here</a>. "
"Once the folder is downloaded, place it in C:/Users/your username/mne_data/fOLD/fOLD-public-master/Supplementary.<br><br>"
"If you are not using Windows, please go to the FLARES Git page for more information."
)
msg_box.setTextFormat(Qt.TextFormat.RichText)
msg_box.setText(message)
msg_box.setTextInteractionFlags(Qt.TextInteractionFlag.TextBrowserInteraction)
msg_box.setStandardButtons(QMessageBox.StandardButton.Ok)
msg_box.exec()
else:
print(f"No method defined for index {idx}")
@@ -2460,7 +2576,7 @@ class ExportDataAsCSVViewerWidget(QWidget):
self.index_texts = [
"0 (Export Data to CSV)",
# "1 (second image)",
"1 (CSV for SPARKS)",
# "2 (third image)",
# "3 (fourth image)",
]
@@ -2612,7 +2728,6 @@ class ExportDataAsCSVViewerWidget(QWidget):
# Pass the necessary arguments to each method
for file_path in selected_file_paths:
haemo_obj = self.haemo_dict.get(file_path)
if haemo_obj is None:
continue
@@ -2646,10 +2761,63 @@ class ExportDataAsCSVViewerWidget(QWidget):
QMessageBox.critical(self, "Error", f"Failed to update SNIRF file:\n{e}")
elif idx == 1:
try:
suggested_name = f"{file_path}_sparks.csv"
# Open save dialog
save_path, _ = QFileDialog.getSaveFileName(
self,
"Save SNIRF File As",
suggested_name,
"CSV Files (*.csv)"
)
if not save_path:
print("Save cancelled.")
return
if not save_path.lower().endswith(".csv"):
save_path += ".csv"
# Save the CSV here
raw = haemo_obj
data, times = raw.get_data(return_times=True)
ann_col = np.full(times.shape, "", dtype=object)
if raw.annotations is not None and len(raw.annotations) > 0:
for onset, duration, desc in zip(
raw.annotations.onset,
raw.annotations.duration,
raw.annotations.description
):
mask = (times >= onset) & (times < onset + duration)
ann_col[mask] = desc
df = pd.DataFrame(data.T, columns=raw.ch_names)
df.insert(0, "annotation", ann_col)
df.insert(0, "time", times)
df.to_csv(save_path, index=False)
QMessageBox.information(self, "Success", "CSV file has been saved.")
win = UpdateEventsWindow(
parent=self,
mode=EventUpdateMode.WRITE_JSON,
caller="Video Alignment Tool"
)
win.show()
except Exception as e:
QMessageBox.critical(self, "Error", f"Failed to update SNIRF file:\n{e}")
else:
print(f"No method defined for index {idx}")
class ClickableLabel(QLabel):
def __init__(self, full_pixmap: QPixmap, thumbnail_pixmap: QPixmap):
super().__init__()
@@ -4275,7 +4443,7 @@ class MainApplication(QMainWindow):
def update_event_markers(self):
if self.events is None or not self.events.isVisible():
self.events = UpdateEventsWindow(self)
self.events = UpdateEventsWindow(self, EventUpdateMode.WRITE_SNIRF, "Manual SNIRF Edit")
self.events.show()
def open_file_dialog(self):

View File

@@ -12,7 +12,7 @@ from pathlib import Path
import numpy as np
from scipy import linalg
from scipy.spatial.distance import cdist
from scipy.special import sph_harm
from scipy.special import sph_harm_y
from ._fiff.constants import FIFF
from ._fiff.open import fiff_open

View File

@@ -1025,7 +1025,7 @@ def _handle_sensor_types(meg, eeg, fnirs):
fnirs=dict(channels="fnirs", pairs="fnirs_pairs"),
)
sensor_alpha = {
key: dict(meg_helmet=0.25, meg=0.25).get(key, 0.8)
key: dict(meg_helmet=0.25, meg=0.25).get(key, 1.0)
for ch_dict in alpha_map.values()
for key in ch_dict.values()
}

View File

@@ -586,7 +586,7 @@ class _PyVistaRenderer(_AbstractRenderer):
color = None
else:
scalars = None
tube = line.tube(radius, n_sides=self.tube_n_sides)
tube = line.tube(radius=radius, n_sides=self.tube_n_sides)
actor = _add_mesh(
plotter=self.plotter,
mesh=tube,

View File

@@ -18,7 +18,7 @@ VSVersionInfo(
StringStruct('FileDescription', 'FLARES main application'),
StringStruct('FileVersion', '1.0.0.0'),
StringStruct('InternalName', 'flares.exe'),
StringStruct('LegalCopyright', '© 2025 Tyler de Zeeuw'),
StringStruct('LegalCopyright', '© 2025-2026 Tyler de Zeeuw'),
StringStruct('OriginalFilename', 'flares.exe'),
StringStruct('ProductName', 'FLARES'),
StringStruct('ProductVersion', '1.0.0.0')])

View File

@@ -18,7 +18,7 @@ VSVersionInfo(
StringStruct('FileDescription', 'FLARES updater application'),
StringStruct('FileVersion', '1.0.0.0'),
StringStruct('InternalName', 'main.exe'),
StringStruct('LegalCopyright', '© 2025 Tyler de Zeeuw'),
StringStruct('LegalCopyright', '© 2025-2026 Tyler de Zeeuw'),
StringStruct('OriginalFilename', 'flares_updater.exe'),
StringStruct('ProductName', 'FLARES Updater'),
StringStruct('ProductVersion', '1.0.0.0')])