# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from .._fiff.meas_info import create_info from .._fiff.pick import _picks_to_idx, pick_channels, pick_types from ..annotations import _annotations_starts_stops from ..epochs import BaseEpochs, Epochs from ..evoked import Evoked from ..filter import filter_data from ..io import BaseRaw, RawArray from ..utils import int_like, logger, sum_squared, verbose, warn @verbose def qrs_detector( sfreq, ecg, thresh_value=0.6, levels=2.5, n_thresh=3, l_freq=5, h_freq=35, tstart=0, filter_length="10s", verbose=None, ): """Detect QRS component in ECG channels. QRS is the main wave on the heart beat. Parameters ---------- sfreq : float Sampling rate ecg : array ECG signal thresh_value : float | str qrs detection threshold. Can also be "auto" for automatic selection of threshold. levels : float number of std from mean to include for detection n_thresh : int max number of crossings l_freq : float Low pass frequency h_freq : float High pass frequency %(tstart_ecg)s %(filter_length_ecg)s %(verbose)s Returns ------- events : array Indices of ECG peaks. """ win_size = int(round((60.0 * sfreq) / 120.0)) filtecg = filter_data( ecg, sfreq, l_freq, h_freq, None, filter_length, 0.5, 0.5, phase="zero-double", fir_window="hann", fir_design="firwin2", ) ecg_abs = np.abs(filtecg) init = int(sfreq) n_samples_start = int(sfreq * tstart) ecg_abs = ecg_abs[n_samples_start:] n_points = len(ecg_abs) maxpt = np.empty(3) maxpt[0] = np.max(ecg_abs[:init]) maxpt[1] = np.max(ecg_abs[init : init * 2]) maxpt[2] = np.max(ecg_abs[init * 2 : init * 3]) init_max = np.mean(maxpt) if thresh_value == "auto": thresh_runs = np.arange(0.3, 1.1, 0.05) elif isinstance(thresh_value, str): raise ValueError('threshold value must be "auto" or a float') else: thresh_runs = [thresh_value] # Try a few thresholds (or just one) clean_events = list() for thresh_value in thresh_runs: thresh1 = init_max * thresh_value numcross = list() time = list() rms = list() ii = 0 while ii < (n_points - win_size): window = ecg_abs[ii : ii + win_size] if window[0] > thresh1: max_time = np.argmax(window) time.append(ii + max_time) nx = np.sum( np.diff(((window > thresh1).astype(np.int64) == 1).astype(int)) ) numcross.append(nx) rms.append(np.sqrt(sum_squared(window) / window.size)) ii += win_size else: ii += 1 if len(rms) == 0: rms.append(0.0) time.append(0.0) time = np.array(time) rms_mean = np.mean(rms) rms_std = np.std(rms) rms_thresh = rms_mean + (rms_std * levels) b = np.where(rms < rms_thresh)[0] a = np.array(numcross)[b] ce = time[b[a < n_thresh]] ce += n_samples_start if ce.size > 0: # We actually found an event clean_events.append(ce) if clean_events: # pick the best threshold; first get effective heart rates rates = np.array( [60.0 * len(cev) / (len(ecg) / float(sfreq)) for cev in clean_events] ) # now find heart rates that seem reasonable (infant through adult # athlete) idx = np.where(np.logical_and(rates <= 160.0, rates >= 40.0))[0] if idx.size > 0: ideal_rate = np.median(rates[idx]) # get close to the median else: ideal_rate = 80.0 # get close to a reasonable default idx = np.argmin(np.abs(rates - ideal_rate)) clean_events = clean_events[idx] else: clean_events = np.array([]) return clean_events @verbose def find_ecg_events( raw, event_id=999, ch_name=None, tstart=0.0, l_freq=5, h_freq=35, qrs_threshold="auto", filter_length="10s", return_ecg=False, reject_by_annotation=True, verbose=None, ): """Find ECG events by localizing the R wave peaks. Parameters ---------- raw : instance of Raw The raw data. %(event_id_ecg)s %(ch_name_ecg)s %(tstart_ecg)s %(l_freq_ecg_filter)s qrs_threshold : float | str Between 0 and 1. qrs detection threshold. Can also be "auto" to automatically choose the threshold that generates a reasonable number of heartbeats (40-160 beats / min). %(filter_length_ecg)s return_ecg : bool Return the ECG data. This is especially useful if no ECG channel is present in the input data, so one will be synthesized (only works if MEG channels are present in the data). Defaults to ``False``. %(reject_by_annotation_all)s .. versionadded:: 0.18 %(verbose)s Returns ------- ecg_events : array The events corresponding to the peaks of the R waves. ch_ecg : int | None Index of channel used. average_pulse : float The estimated average pulse. If no ECG events could be found, this will be zero. ecg : array | None The ECG data of the synthesized ECG channel, if any. This will only be returned if ``return_ecg=True`` was passed. See Also -------- create_ecg_epochs compute_proj_ecg """ skip_by_annotation = ("edge", "bad") if reject_by_annotation else () del reject_by_annotation idx_ecg = _get_ecg_channel_index(ch_name, raw) if idx_ecg is not None: logger.info(f"Using channel {raw.ch_names[idx_ecg]} to identify heart beats.") ecg = raw.get_data(picks=idx_ecg) else: ecg, _ = _make_ecg(raw, start=None, stop=None) assert ecg.ndim == 2 and ecg.shape[0] == 1 ecg = ecg[0] # Deal with filtering the same way we do in raw, i.e. filter each good # segment onsets, ends = _annotations_starts_stops( raw, skip_by_annotation, "reject_by_annotation", invert=True ) ecgs = list() max_idx = (ends - onsets).argmax() for si, (start, stop) in enumerate(zip(onsets, ends)): # Only output filter params once (for info level), and only warn # once about the length criterion (longest segment is too short) use_verbose = verbose if si == max_idx else "error" ecgs.append( filter_data( ecg[start:stop], raw.info["sfreq"], l_freq, h_freq, [0], filter_length, 0.5, 0.5, 1, "fir", None, copy=False, phase="zero-double", fir_window="hann", fir_design="firwin2", verbose=use_verbose, ) ) ecg = np.concatenate(ecgs) # detecting QRS and generating events. Since not user-controlled, don't # output filter params here (hardcode verbose=False) ecg_events = qrs_detector( raw.info["sfreq"], ecg, tstart=tstart, thresh_value=qrs_threshold, l_freq=None, h_freq=None, verbose=False, ) # map ECG events back to original times remap = np.empty(len(ecg), int) offset = 0 for start, stop in zip(onsets, ends): this_len = stop - start assert this_len >= 0 remap[offset : offset + this_len] = np.arange(start, stop) offset += this_len assert offset == len(ecg) if ecg_events.size > 0: ecg_events = remap[ecg_events] else: ecg_events = np.array([]) n_events = len(ecg_events) duration_sec = len(ecg) / raw.info["sfreq"] - tstart duration_min = duration_sec / 60.0 average_pulse = n_events / duration_min logger.info( f"Number of ECG events detected : {n_events} " f"(average pulse {average_pulse} / min.)" ) ecg_events = np.array( [ ecg_events + raw.first_samp, np.zeros(n_events, int), event_id * np.ones(n_events, int), ] ).T out = (ecg_events, idx_ecg, average_pulse) ecg = ecg[np.newaxis] # backward compat output 2D if return_ecg: out += (ecg,) return out def _get_ecg_channel_index(ch_name, inst): """Get ECG channel index, if no channel found returns None.""" if ch_name is None: ecg_idx = pick_types( inst.info, meg=False, eeg=False, stim=False, eog=False, ecg=True, emg=False, ref_meg=False, exclude="bads", ) else: if ch_name not in inst.ch_names: raise ValueError(f"{ch_name} not in channel list ({inst.ch_names})") ecg_idx = pick_channels(inst.ch_names, include=[ch_name]) if len(ecg_idx) == 0: return None if len(ecg_idx) > 1: warn( f"More than one ECG channel found. Using only {inst.ch_names[ecg_idx[0]]}." ) return ecg_idx[0] @verbose def create_ecg_epochs( raw, ch_name=None, event_id=999, picks=None, tmin=-0.5, tmax=0.5, l_freq=8, h_freq=16, reject=None, flat=None, baseline=None, preload=True, keep_ecg=False, reject_by_annotation=True, decim=1, verbose=None, ): """Conveniently generate epochs around ECG artifact events. %(create_ecg_epochs)s .. note:: Filtering is only applied to the ECG channel while finding events. The resulting ``ecg_epochs`` will have no filtering applied (i.e., have the same filter properties as the input ``raw`` instance). Parameters ---------- raw : instance of Raw The raw data. %(ch_name_ecg)s %(event_id_ecg)s %(picks_all)s tmin : float Start time before event. tmax : float End time after event. %(l_freq_ecg_filter)s %(reject_epochs)s %(flat)s %(baseline_epochs)s preload : bool Preload epochs or not (default True). Must be True if keep_ecg is True. keep_ecg : bool When ECG is synthetically created (after picking), should it be added to the epochs? Must be False when synthetic channel is not used. Defaults to False. %(reject_by_annotation_epochs)s .. versionadded:: 0.14.0 %(decim)s .. versionadded:: 0.21.0 %(verbose)s Returns ------- ecg_epochs : instance of Epochs Data epoched around ECG R wave peaks. See Also -------- find_ecg_events compute_proj_ecg Notes ----- If you already have a list of R-peak times, or want to compute R-peaks outside MNE-Python using a different algorithm, the recommended approach is to call the :class:`~mne.Epochs` constructor directly, with your R-peaks formatted as an :term:`events` array (here we also demonstrate the relevant default values):: mne.Epochs(raw, r_peak_events_array, tmin=-0.5, tmax=0.5, baseline=None, preload=True, proj=False) # doctest: +SKIP """ has_ecg = "ecg" in raw or ch_name is not None if keep_ecg and (has_ecg or not preload): raise ValueError( "keep_ecg can be True only if the ECG channel is " "created synthetically and preload=True." ) events, _, _, ecg = find_ecg_events( raw, ch_name=ch_name, event_id=event_id, l_freq=l_freq, h_freq=h_freq, return_ecg=True, reject_by_annotation=reject_by_annotation, ) picks = _picks_to_idx(raw.info, picks, "all", exclude=()) # create epochs around ECG events and baseline (important) ecg_epochs = Epochs( raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, proj=False, flat=flat, picks=picks, reject=reject, baseline=baseline, reject_by_annotation=reject_by_annotation, preload=preload, decim=decim, ) if keep_ecg: # We know we have created a synthetic channel and epochs are preloaded ecg_raw = RawArray( ecg, create_info( ch_names=["ECG-SYN"], sfreq=raw.info["sfreq"], ch_types=["ecg"] ), first_samp=raw.first_samp, ) with ecg_raw.info._unlock(): ignore = ["ch_names", "chs", "nchan", "bads"] for k, v in raw.info.items(): if k not in ignore: ecg_raw.info[k] = v syn_epochs = Epochs( ecg_raw, events=ecg_epochs.events, event_id=event_id, tmin=tmin, tmax=tmax, proj=False, picks=[0], baseline=baseline, decim=decim, preload=True, ) ecg_epochs = ecg_epochs.add_channels([syn_epochs]) return ecg_epochs @verbose def _make_ecg(inst, start, stop, reject_by_annotation=False, verbose=None): """Create ECG signal from cross channel average.""" if not any(c in inst for c in ["mag", "grad"]): raise ValueError( "Generating an artificial ECG channel can only be done for MEG data." ) for ch in ["mag", "grad"]: if ch in inst: break logger.info( "Reconstructing ECG signal from {}".format( {"mag": "Magnetometers", "grad": "Gradiometers"}[ch] ) ) picks = pick_types(inst.info, meg=ch, eeg=False, ref_meg=False) # Handle start/stop msg = ( "integer arguments for the start and stop parameters are " "not supported for Epochs and Evoked objects. Please " "consider using float arguments specifying start and stop " "time in seconds." ) begin_param_name = "tmin" if isinstance(start, int_like): if isinstance(inst, BaseRaw): # Raw has start param, can just use int begin_param_name = "start" else: raise ValueError(msg) end_param_name = "tmax" if isinstance(start, int_like): if isinstance(inst, BaseRaw): # Raw has stop param, can just use int end_param_name = "stop" else: raise ValueError(msg) kwargs = {begin_param_name: start, end_param_name: stop} if isinstance(inst, BaseRaw): reject_by_annotation = "omit" if reject_by_annotation else None ecg, times = inst.get_data( picks, return_times=True, **kwargs, reject_by_annotation=reject_by_annotation, ) elif isinstance(inst, BaseEpochs): ecg = np.hstack(inst.copy().get_data(picks, **kwargs)) times = inst.times elif isinstance(inst, Evoked): ecg = inst.get_data(picks, **kwargs) times = inst.times return ecg.mean(0, keepdims=True), times