Files
flares/mne/channels/montage.py
2025-08-19 09:13:22 -07:00

1847 lines
58 KiB
Python

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os.path as op
import re
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass
import numpy as np
from .._fiff._digitization import (
_coord_frame_const,
_count_points_by_type,
_ensure_fiducials_head,
_format_dig_points,
_get_data_as_dict_from_dig,
_get_dig_eeg,
_get_fid_coords,
_make_dig_points,
_read_dig_fif,
write_dig,
)
from .._fiff.constants import CHANNEL_LOC_ALIASES, FIFF
from .._fiff.meas_info import create_info
from .._fiff.open import fiff_open
from .._fiff.pick import _picks_to_idx, channel_type, pick_types
from .._freesurfer import get_mni_fiducials
from ..defaults import HEAD_SIZE_DEFAULT
from ..transforms import (
Transform,
_ensure_trans,
_fit_matched_points,
_frame_to_str,
_quat_to_affine,
_sph_to_cart,
_topo_to_sph,
_verbose_frames,
apply_trans,
get_ras_to_neuromag_trans,
)
from ..utils import (
_check_fname,
_check_option,
_on_missing,
_pl,
_validate_type,
check_fname,
copy_function_doc_to_method_doc,
fill_doc,
verbose,
warn,
)
from ..utils.docs import docdict
from ..viz import plot_montage
from ._dig_montage_utils import _parse_brainvision_dig_montage, _read_dig_montage_egi
@dataclass
class _BuiltinStandardMontage:
name: str
description: str
_BUILTIN_STANDARD_MONTAGES = [
_BuiltinStandardMontage(
name="standard_1005",
description="Electrodes are named and positioned according to the "
"international 10-05 system (343+3 locations)",
),
_BuiltinStandardMontage(
name="standard_1020",
description="Electrodes are named and positioned according to the "
"international 10-20 system (94+3 locations)",
),
_BuiltinStandardMontage(
name="standard_alphabetic",
description="Electrodes are named with LETTER-NUMBER combinations "
"(A1, B2, F4, …) (65+3 locations)",
),
_BuiltinStandardMontage(
name="standard_postfixed",
description="Electrodes are named according to the international "
"10-20 system using postfixes for intermediate positions "
"(100+3 locations)",
),
_BuiltinStandardMontage(
name="standard_prefixed",
description="Electrodes are named according to the international "
"10-20 system using prefixes for intermediate positions "
"(74+3 locations)",
),
_BuiltinStandardMontage(
name="standard_primed",
description="Electrodes are named according to the international "
"10-20 system using prime marks (' and '') for "
"intermediate positions (100+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi16",
description="BioSemi cap with 16 electrodes (16+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi32",
description="BioSemi cap with 32 electrodes (32+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi64",
description="BioSemi cap with 64 electrodes (64+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi128",
description="BioSemi cap with 128 electrodes (128+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi160",
description="BioSemi cap with 160 electrodes (160+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi256",
description="BioSemi cap with 256 electrodes (256+3 locations)",
),
_BuiltinStandardMontage(
name="easycap-M1",
description="EasyCap with 10-05 electrode names (74 locations)",
),
_BuiltinStandardMontage(
name="easycap-M10",
description="EasyCap with numbered electrodes (61 locations)",
),
_BuiltinStandardMontage(
name="easycap-M43",
description="EasyCap with numbered electrodes (64 locations)",
),
_BuiltinStandardMontage(
name="EGI_256",
description="Geodesic Sensor Net (256 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-32",
description="HydroCel Geodesic Sensor Net and Cz (33+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-64_1.0",
description="HydroCel Geodesic Sensor Net (64+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-65_1.0",
description="HydroCel Geodesic Sensor Net and Cz (65+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-128",
description="HydroCel Geodesic Sensor Net (128+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-129",
description="HydroCel Geodesic Sensor Net and Cz (129+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-256",
description="HydroCel Geodesic Sensor Net (256+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-257",
description="HydroCel Geodesic Sensor Net and Cz (257+3 locations)",
),
_BuiltinStandardMontage(
name="mgh60",
description="The (older) 60-channel cap used at MGH (60+3 locations)",
),
_BuiltinStandardMontage(
name="mgh70",
description="The (newer) 70-channel BrainVision cap used at MGH "
"(70+3 locations)",
),
_BuiltinStandardMontage(
name="artinis-octamon",
description="Artinis OctaMon fNIRS (8 sources, 2 detectors)",
),
_BuiltinStandardMontage(
name="artinis-brite23",
description="Artinis Brite23 fNIRS (11 sources, 7 detectors)",
),
_BuiltinStandardMontage(
name="brainproducts-RNP-BA-128",
description="Brain Products with 10-10 electrode names (128 channels)",
),
]
def _check_get_coord_frame(dig):
dig_coord_frames = sorted(set(d["coord_frame"] for d in dig))
if len(dig_coord_frames) != 1:
raise RuntimeError(
"Only a single coordinate frame in dig is supported, got "
f"{dig_coord_frames}"
)
return _frame_to_str[dig_coord_frames.pop()] if dig_coord_frames else None
def get_builtin_montages(*, descriptions=False):
"""Get a list of all standard montages shipping with MNE-Python.
The names of the montages can be passed to :func:`make_standard_montage`.
Parameters
----------
descriptions : bool
Whether to return not only the montage names, but also their
corresponding descriptions. If ``True``, a list of tuples is returned,
where the first tuple element is the montage name and the second is
the montage description. If ``False`` (default), only the names are
returned.
.. versionadded:: 1.1
Returns
-------
montages : list of str | list of tuple
If ``descriptions=False``, the names of all builtin montages that can
be used by :func:`make_standard_montage`.
If ``descriptions=True``, a list of tuples ``(name, description)``.
"""
if descriptions:
return [(m.name, m.description) for m in _BUILTIN_STANDARD_MONTAGES]
else:
return [m.name for m in _BUILTIN_STANDARD_MONTAGES]
def make_dig_montage(
ch_pos=None,
nasion=None,
lpa=None,
rpa=None,
hsp=None,
hpi=None,
coord_frame="unknown",
):
r"""Make montage from arrays.
Parameters
----------
ch_pos : dict | None
Dictionary of channel positions. Keys are channel names and values
are 3D coordinates - array of shape (3,) - in native digitizer space
in m.
nasion : None | array, shape (3,)
The position of the nasion fiducial point.
This point is assumed to be in the native digitizer space in m.
lpa : None | array, shape (3,)
The position of the left periauricular fiducial point.
This point is assumed to be in the native digitizer space in m.
rpa : None | array, shape (3,)
The position of the right periauricular fiducial point.
This point is assumed to be in the native digitizer space in m.
hsp : None | array, shape (n_points, 3)
This corresponds to an array of positions of the headshape points in
3d. These points are assumed to be in the native digitizer space in m.
hpi : None | array, shape (n_hpi, 3)
This corresponds to an array of HPI points in the native digitizer
space. They only necessary if computation of a ``compute_dev_head_t``
is True.
coord_frame : str
The coordinate frame of the points. Usually this is ``'unknown'``
for native digitizer space.
Other valid values are: ``'head'``, ``'meg'``, ``'mri'``,
``'mri_voxel'``, ``'mni_tal'``, ``'ras'``, ``'fs_tal'``,
``'ctf_head'``, and ``'ctf_meg'``.
.. note::
For custom montages without fiducials, this parameter must be set
to ``'head'``.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_egi
read_dig_fif
read_dig_localite
read_dig_polhemus_isotrak
"""
_validate_type(ch_pos, (dict, None), "ch_pos")
if ch_pos is None:
ch_names = None
else:
ch_names = list(ch_pos)
dig = _make_dig_points(
nasion=nasion,
lpa=lpa,
rpa=rpa,
hpi=hpi,
extra_points=hsp,
dig_ch_pos=ch_pos,
coord_frame=coord_frame,
)
return DigMontage(dig=dig, ch_names=ch_names)
class DigMontage:
"""Montage for digitized electrode and headshape position data.
.. warning:: Montages are typically created using one of the helper
functions in the ``See Also`` section below instead of
instantiating this class directly.
Parameters
----------
dig : list of dict
The object containing all the dig points.
ch_names : list of str
The names of the EEG channels.
See Also
--------
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, *, dig=None, ch_names=None):
dig = list() if dig is None else dig
_validate_type(item=dig, types=list, item_name="dig")
ch_names = list() if ch_names is None else ch_names
n_eeg = sum([1 for d in dig if d["kind"] == FIFF.FIFFV_POINT_EEG])
if n_eeg != len(ch_names):
raise ValueError(
f"The number of EEG channels ({n_eeg}) does not match the number"
f" of channel names provided ({len(ch_names)})"
)
self.dig = dig
self.ch_names = ch_names
def __repr__(self):
"""Return string representation."""
n_points = _count_points_by_type(self.dig)
return (
"<DigMontage | {extra:d} extras (headshape), {hpi:d} HPIs,"
" {fid:d} fiducials, {eeg:d} channels>"
).format(**n_points)
@copy_function_doc_to_method_doc(plot_montage)
def plot(
self,
*,
scale=None,
scale_factor=None,
show_names=True,
kind="topomap",
show=True,
sphere=None,
axes=None,
verbose=None,
):
return plot_montage(
self,
scale=scale,
scale_factor=scale_factor,
show_names=show_names,
kind=kind,
show=show,
sphere=sphere,
axes=axes,
)
@fill_doc
def rename_channels(self, mapping, allow_duplicates=False):
"""Rename the channels.
Parameters
----------
%(mapping_rename_channels_duplicates)s
Returns
-------
inst : instance of DigMontage
The instance. Operates in-place.
"""
from .channels import rename_channels
temp_info = create_info(list(self._get_ch_pos()), 1000.0, "eeg")
rename_channels(temp_info, mapping, allow_duplicates)
self.ch_names = temp_info["ch_names"]
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save digitization points to FIF.
Parameters
----------
fname : path-like
The filename to use. Should end in .fif or .fif.gz.
%(overwrite)s
%(verbose)s
See Also
--------
mne.channels.read_dig_fif
Notes
-----
.. versionchanged:: 1.9
Added support for saving the associated channel names.
"""
fname = _check_fname(fname, overwrite=overwrite)
check_fname(fname, "montage", ("-dig.fif", "-dig.fif.gz"))
coord_frame = _check_get_coord_frame(self.dig)
write_dig(
fname, self.dig, coord_frame, overwrite=overwrite, ch_names=self.ch_names
)
def __iadd__(self, other):
"""Add two DigMontages in place.
Notes
-----
Two DigMontages can only be added if there are no duplicated ch_names
and if fiducials are present they should share the same coordinate
system and location values.
"""
def is_fid_defined(fid):
return not (fid.nasion is None and fid.lpa is None and fid.rpa is None)
# Check for none duplicated ch_names
ch_names_intersection = set(self.ch_names).intersection(other.ch_names)
if ch_names_intersection:
raise RuntimeError(
(
"Cannot add two DigMontage objects if they contain duplicated"
" channel names. Duplicated channel(s) found: {}."
).format(", ".join([f"{v!r}" for v in sorted(ch_names_intersection)]))
)
# Check for unique matching fiducials
self_fid, self_coord = _get_fid_coords(self.dig)
other_fid, other_coord = _get_fid_coords(other.dig)
if is_fid_defined(self_fid) and is_fid_defined(other_fid):
if self_coord != other_coord:
raise RuntimeError(
"Cannot add two DigMontage objects if "
"fiducial locations are not in the same "
"coordinate system."
)
for kk in self_fid:
if not np.array_equal(self_fid[kk], other_fid[kk]):
raise RuntimeError(
"Cannot add two DigMontage objects if "
"fiducial locations do not match "
f"({kk})"
)
# keep self
self.dig = _format_dig_points(
self.dig
+ [d for d in other.dig if d["kind"] != FIFF.FIFFV_POINT_CARDINAL]
)
else:
self.dig = _format_dig_points(self.dig + other.dig)
self.ch_names += other.ch_names
return self
def copy(self):
"""Copy the DigMontage object.
Returns
-------
dig : instance of DigMontage
The copied DigMontage instance.
"""
return deepcopy(self)
def __add__(self, other):
"""Add two DigMontages."""
out = self.copy()
out += other
return out
def __eq__(self, other):
"""Compare different DigMontage objects for equality.
Returns
-------
Boolean output from comparison of .dig
"""
return self.dig == other.dig and self.ch_names == other.ch_names
def _get_ch_pos(self):
pos = [d["r"] for d in _get_dig_eeg(self.dig)]
assert len(self.ch_names) == len(pos)
return OrderedDict(zip(self.ch_names, pos))
def _get_dig_names(self):
NAMED_KIND = (FIFF.FIFFV_POINT_EEG,)
is_eeg = np.array([d["kind"] in NAMED_KIND for d in self.dig])
assert len(self.ch_names) == is_eeg.sum()
dig_names = [None] * len(self.dig)
for ch_name_idx, dig_idx in enumerate(np.where(is_eeg)[0]):
dig_names[dig_idx] = self.ch_names[ch_name_idx]
return dig_names
def get_positions(self):
"""Get all channel and fiducial positions.
Returns
-------
positions : dict
A dictionary of the positions for channels (``ch_pos``),
coordinate frame (``coord_frame``), nasion (``nasion``),
left preauricular point (``lpa``),
right preauricular point (``rpa``),
Head Shape Polhemus (``hsp``), and
Head Position Indicator(``hpi``).
E.g.::
{
'ch_pos': {'EEG061': [0, 0, 0]},
'nasion': [0, 0, 1],
'coord_frame': 'mni_tal',
'lpa': [0, 1, 0],
'rpa': [1, 0, 0],
'hsp': None,
'hpi': None
}
"""
# get channel positions as dict
ch_pos = self._get_ch_pos()
# get coordframe and fiducial coordinates
montage_bunch = _get_data_as_dict_from_dig(self.dig)
coord_frame = _frame_to_str.get(montage_bunch.coord_frame)
# return dictionary
positions = dict(
ch_pos=ch_pos,
coord_frame=coord_frame,
nasion=montage_bunch.nasion,
lpa=montage_bunch.lpa,
rpa=montage_bunch.rpa,
hsp=montage_bunch.hsp,
hpi=montage_bunch.hpi,
)
return positions
@verbose
def apply_trans(self, trans, verbose=None):
"""Apply a transformation matrix to the montage.
Parameters
----------
trans : instance of mne.transforms.Transform
The transformation matrix to be applied.
%(verbose)s
"""
_validate_type(trans, Transform, "trans")
coord_frame = self.get_positions()["coord_frame"]
trans = _ensure_trans(trans, fro=coord_frame, to=trans["to"])
for d in self.dig:
d["r"] = apply_trans(trans, d["r"])
d["coord_frame"] = trans["to"]
@verbose
def add_estimated_fiducials(self, subject, subjects_dir=None, verbose=None):
"""Estimate fiducials based on FreeSurfer ``fsaverage`` subject.
This takes a montage with the ``mri`` coordinate frame,
corresponding to the FreeSurfer RAS (xyz in the volume) T1w
image of the specific subject. It will call
:func:`mne.coreg.get_mni_fiducials` to estimate LPA, RPA and
Nasion fiducial points.
Parameters
----------
%(subject)s
%(subjects_dir)s
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
See Also
--------
:ref:`tut-source-alignment`
Notes
-----
Since MNE uses the FIF data structure, it relies on the ``head``
coordinate frame. Any coordinate frame can be transformed
to ``head`` if the fiducials (i.e. LPA, RPA and Nasion) are
defined. One can use this function to estimate those fiducials
and then use ``mne.channels.compute_native_head_t(montage)``
to get the head <-> MRI transform.
"""
# get coordframe and fiducial coordinates
montage_bunch = _get_data_as_dict_from_dig(self.dig)
# get the coordinate frame and check that it's MRI
if montage_bunch.coord_frame != FIFF.FIFFV_COORD_MRI:
raise RuntimeError(
f'Montage should be in the "mri" coordinate frame '
f"to use `add_estimated_fiducials`. The current coordinate "
f"frame is {montage_bunch.coord_frame}"
)
# estimate LPA, nasion, RPA from FreeSurfer fsaverage
fids_mri = list(get_mni_fiducials(subject, subjects_dir))
# add those digpoints to front of montage
self.dig = fids_mri + self.dig
return self
@verbose
def add_mni_fiducials(self, subjects_dir=None, verbose=None):
"""Add fiducials to a montage in MNI space.
Parameters
----------
%(subjects_dir)s
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
Notes
-----
``fsaverage`` is in MNI space and so its fiducials can be
added to a montage in "mni_tal". MNI is an ACPC-aligned
coordinate system (the posterior commissure is the origin)
so since BIDS requires channel locations for ECoG, sEEG and
DBS to be in ACPC space, this function can be used to allow
those coordinate to be transformed to "head" space (origin
between LPA and RPA).
"""
montage_bunch = _get_data_as_dict_from_dig(self.dig)
# get the coordinate frame and check that it's MNI TAL
if montage_bunch.coord_frame != FIFF.FIFFV_MNE_COORD_MNI_TAL:
raise RuntimeError(
f'Montage should be in the "mni_tal" coordinate frame '
f"to use `add_estimated_fiducials`. The current coordinate "
f"frame is {montage_bunch.coord_frame}"
)
fids_mni = get_mni_fiducials("fsaverage", subjects_dir)
for fid in fids_mni:
# "mri" and "mni_tal" are equivalent for fsaverage
assert fid["coord_frame"] == FIFF.FIFFV_COORD_MRI
fid["coord_frame"] = FIFF.FIFFV_MNE_COORD_MNI_TAL
self.dig = fids_mni + self.dig
return self
@verbose
def remove_fiducials(self, verbose=None):
"""Remove the fiducial points from a montage.
Parameters
----------
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
Notes
-----
MNE will transform a montage to the internal "head" coordinate
frame if the fiducials are present. Under most circumstances, this
is ideal as it standardizes the coordinate frame for things like
plotting. However, in some circumstances, such as saving a ``raw``
with intracranial data to BIDS format, the coordinate frame
should not be changed by removing fiducials.
"""
for d in self.dig.copy():
if d["kind"] == FIFF.FIFFV_POINT_CARDINAL:
self.dig.remove(d)
return self
VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)
def _check_unit_and_get_scaling(unit):
_check_option("unit", unit, sorted(VALID_SCALES.keys()))
return VALID_SCALES[unit]
def transform_to_head(montage):
"""Transform a DigMontage object into head coordinate.
Parameters
----------
montage : instance of DigMontage
The montage.
Returns
-------
montage : instance of DigMontage
The montage after transforming the points to head
coordinate system.
Notes
-----
This function requires that the LPA, RPA and Nasion fiducial
points are available. If they are not, they will be added based by
projecting the fiducials onto a sphere with radius equal to the average
distance of each point to the origin (in the given coordinate frame).
This function assumes that all fiducial points are in the same coordinate
frame (e.g. 'unknown') and it will convert all the point in this coordinate
system to Neuromag head coordinate system.
.. versionchanged:: 1.2
Fiducial points will be added automatically if the montage does not
have them.
"""
# Get fiducial points and their coord_frame
native_head_t = compute_native_head_t(montage)
montage = montage.copy() # to avoid inplace modification
if native_head_t["from"] != FIFF.FIFFV_COORD_HEAD:
for d in montage.dig:
if d["coord_frame"] == native_head_t["from"]:
d["r"] = apply_trans(native_head_t, d["r"])
d["coord_frame"] = FIFF.FIFFV_COORD_HEAD
_ensure_fiducials_head(montage.dig)
return montage
def read_dig_dat(fname):
r"""Read electrode positions from a ``*.dat`` file.
.. Warning::
This function was implemented based on ``*.dat`` files available from
`Compumedics <https://compumedicsneuroscan.com>`__ and might not work
as expected with novel files. If it does not read your files correctly
please contact the MNE-Python developers.
Parameters
----------
fname : path-like
File from which to read electrode locations.
Returns
-------
montage : DigMontage
The montage.
See Also
--------
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
``*.dat`` files are plain text files and can be inspected and amended with
a plain text editor.
"""
from ._standard_montage_utils import _check_dupes_odict
fname = _check_fname(fname, overwrite="read", must_exist=True)
with open(fname) as fid:
lines = fid.readlines()
ch_names, poss = list(), list()
nasion = lpa = rpa = None
for i, line in enumerate(lines):
items = line.split()
if not items:
continue
elif len(items) != 5:
raise ValueError(
f"Error reading {fname}, line {i} has unexpected number of entries:\n"
f"{line.rstrip()}"
)
num = items[1]
if num == "67":
continue # centroid
pos = np.array([float(item) for item in items[2:]])
if num == "78":
nasion = pos
elif num == "76":
lpa = pos
elif num == "82":
rpa = pos
else:
ch_names.append(items[0])
poss.append(pos)
electrodes = _check_dupes_odict(ch_names, poss)
return make_dig_montage(electrodes, nasion, lpa, rpa)
@verbose
def read_dig_fif(fname, *, verbose=None):
r"""Read digitized points from a .fif file.
Parameters
----------
fname : path-like
FIF file from which to read digitization locations.
%(verbose)s
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_dat
read_dig_egi
read_dig_captrak
read_dig_polhemus_isotrak
read_dig_hpts
read_dig_localite
make_dig_montage
Notes
-----
.. versionchanged:: 1.9
Added support for reading the associated channel names, if present.
In some files, electrode names are not present (e.g., in older files).
For those files, the channel names are defined with the convention from
VectorView systems (EEG001, EEG002, etc.).
"""
check_fname(fname, "montage", ("-dig.fif", "-dig.fif.gz"))
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
# Load the dig data
f, tree = fiff_open(fname)[:2]
with f as fid:
dig, ch_names = _read_dig_fif(fid, tree, return_ch_names=True)
if ch_names is None: # backward compat from when we didn't save the names
ch_names = []
for d in dig:
if d["kind"] == FIFF.FIFFV_POINT_EEG:
ch_names.append(f"EEG{d['ident']:03d}")
montage = DigMontage(dig=dig, ch_names=ch_names)
return montage
def read_dig_hpts(fname, unit="mm"):
"""Read historical ``.hpts`` MNE-C files.
Parameters
----------
fname : path-like
The filepath of .hpts file.
unit : ``'m'`` | ``'cm'`` | ``'mm'``
Unit of the positions. Defaults to ``'mm'``.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
The hpts format digitzer data file may contain comment lines starting
with the pound sign (#) and data lines of the form::
<*category*> <*identifier*> <*x/mm*> <*y/mm*> <*z/mm*>
where:
``<*category*>``
defines the type of points. Allowed categories are: ``hpi``,
``cardinal`` (fiducial), ``eeg``, and ``extra`` corresponding to
head-position indicator coil locations, cardinal landmarks, EEG
electrode locations, and additional head surface points,
respectively.
``<*identifier*>``
identifies the point. The identifiers are usually sequential
numbers. For cardinal landmarks, 1 = left auricular point,
2 = nasion, and 3 = right auricular point. For EEG electrodes,
identifier = 0 signifies the reference electrode.
``<*x/mm*> , <*y/mm*> , <*z/mm*>``
Location of the point, usually in the head coordinate system
in millimeters. If your points are in [m] then unit parameter can
be changed.
For example::
cardinal 2 -5.6729 -12.3873 -30.3671
cardinal 1 -37.6782 -10.4957 91.5228
cardinal 3 -131.3127 9.3976 -22.2363
hpi 1 -30.4493 -11.8450 83.3601
hpi 2 -122.5353 9.2232 -28.6828
hpi 3 -6.8518 -47.0697 -37.0829
hpi 4 7.3744 -50.6297 -12.1376
hpi 5 -33.4264 -43.7352 -57.7756
eeg FP1 3.8676 -77.0439 -13.0212
eeg FP2 -31.9297 -70.6852 -57.4881
eeg F7 -6.1042 -68.2969 45.4939
...
"""
from ._standard_montage_utils import _str, _str_names
fname = _check_fname(fname, overwrite="read", must_exist=True)
_scale = _check_unit_and_get_scaling(unit)
out = np.genfromtxt(fname, comments="#", dtype=(_str, _str, "f8", "f8", "f8"))
kind, label = _str_names(out["f0"]), _str_names(out["f1"])
kind = [k.lower() for k in kind]
xyz = np.array([out[f"f{ii}"] for ii in range(2, 5)]).T
xyz *= _scale
del _scale
fid_idx_to_label = {"1": "lpa", "2": "nasion", "3": "rpa"}
fid = {
fid_idx_to_label[label[ii]]: this_xyz
for ii, this_xyz in enumerate(xyz)
if kind[ii] == "cardinal"
}
ch_pos = {
label[ii]: this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "eeg"
}
hpi = np.array([this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "hpi"])
hpi.shape = (-1, 3) # in case it's empty
hsp = np.array([this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "extra"])
hsp.shape = (-1, 3) # in case it's empty
return make_dig_montage(ch_pos=ch_pos, **fid, hpi=hpi, hsp=hsp)
def read_dig_egi(fname):
"""Read electrode locations from EGI system.
Parameters
----------
fname : path-like
EGI MFF XML coordinates file from which to read digitization locations.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_dat
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
"""
_check_fname(fname, overwrite="read", must_exist=True)
data = _read_dig_montage_egi(
fname=fname, _scaling=1.0, _all_data_kwargs_are_none=True
)
return make_dig_montage(**data)
def read_dig_captrak(fname):
"""Read electrode locations from CapTrak Brain Products system.
Parameters
----------
fname : path-like
BrainVision CapTrak coordinates file from which to read EEG electrode
locations. This is typically in XML format with the .bvct extension.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
"""
_check_fname(fname, overwrite="read", must_exist=True)
data = _parse_brainvision_dig_montage(fname, scale=1e-3)
return make_dig_montage(**data)
def read_dig_localite(fname, nasion=None, lpa=None, rpa=None):
"""Read Localite .csv file.
Parameters
----------
fname : path-like
File name.
nasion : str | None
Name of nasion fiducial point.
lpa : str | None
Name of left preauricular fiducial point.
rpa : str | None
Name of right preauricular fiducial point.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_polhemus_isotrak
make_dig_montage
"""
ch_pos = {}
with open(fname) as f:
f.readline() # skip first row
for row in f:
_, name, x, y, z = row.split(",")
ch_pos[name] = np.array((float(x), float(y), float(z))) / 1000
if nasion is not None:
nasion = ch_pos.pop(nasion)
if lpa is not None:
lpa = ch_pos.pop(lpa)
if rpa is not None:
rpa = ch_pos.pop(rpa)
return make_dig_montage(ch_pos, nasion, lpa, rpa)
def _get_montage_in_head(montage):
coords = set([d["coord_frame"] for d in montage.dig])
montage = montage.copy()
if len(coords) == 1 and coords.pop() == FIFF.FIFFV_COORD_HEAD:
_ensure_fiducials_head(montage.dig)
return montage
else:
return transform_to_head(montage)
def _set_montage_fnirs(info, montage):
"""Set the montage for fNIRS data.
This needs to be different to electrodes as each channel has three
coordinates that need to be set. For each channel there is a source optode
location, a detector optode location, and a channel midpoint that must be
stored. This function modifies info['chs'][#]['loc'] and info['dig'] in
place.
"""
from ..preprocessing.nirs import _validate_nirs_info
# Validate that the fNIRS info is correctly formatted
picks = _validate_nirs_info(info)
# Modify info['chs'][#]['loc'] in place
num_ficiduals = len(montage.dig) - len(montage.ch_names)
for ch_idx in picks:
ch = info["chs"][ch_idx]["ch_name"]
source, detector = ch.split(" ")[0].split("_")
source_pos = montage.dig[montage.ch_names.index(source) + num_ficiduals]["r"]
detector_pos = montage.dig[montage.ch_names.index(detector) + num_ficiduals][
"r"
]
info["chs"][ch_idx]["loc"][3:6] = source_pos
info["chs"][ch_idx]["loc"][6:9] = detector_pos
midpoint = (source_pos + detector_pos) / 2
info["chs"][ch_idx]["loc"][:3] = midpoint
info["chs"][ch_idx]["coord_frame"] = FIFF.FIFFV_COORD_HEAD
# Modify info['dig'] in place
with info._unlock():
info["dig"] = montage.dig
@fill_doc
def _set_montage(info, montage, match_case=True, match_alias=False, on_missing="raise"):
"""Apply montage to data.
With a DigMontage, this function will replace the digitizer info with
the values specified for the particular montage.
Usually, a montage is expected to contain the positions of all EEG
electrodes and a warning is raised when this is not the case.
Parameters
----------
%(info_not_none)s
%(montage)s
%(match_case)s
%(match_alias)s
%(on_missing_montage)s
Notes
-----
This function will change the info variable in place.
"""
_validate_type(montage, (DigMontage, None, str), "montage")
if montage is None:
# Next line modifies info['dig'] in place
with info._unlock():
info["dig"] = None
for ch in info["chs"]:
# Next line modifies info['chs'][#]['loc'] in place
ch["loc"] = np.full(12, np.nan)
return
if isinstance(montage, str): # load builtin montage
_check_option(
parameter="montage",
value=montage,
allowed_values=[m.name for m in _BUILTIN_STANDARD_MONTAGES],
)
montage = make_standard_montage(montage)
mnt_head = _get_montage_in_head(montage)
del montage
def _backcompat_value(pos, ref_pos):
if any(np.isnan(pos)):
return np.full(6, np.nan)
else:
return np.concatenate((pos, ref_pos))
# get the channels in the montage in head
ch_pos = mnt_head._get_ch_pos()
# only get the eeg, seeg, dbs, ecog channels
picks = pick_types(
info, meg=False, eeg=True, seeg=True, dbs=True, ecog=True, exclude=()
)
non_picks = np.setdiff1d(np.arange(info["nchan"]), picks)
# get the reference position from the loc[3:6]
chs = [info["chs"][ii] for ii in picks]
non_names = [info["chs"][ii]["ch_name"] for ii in non_picks]
del picks
ref_pos = np.array([ch["loc"][3:6] for ch in chs])
# keep reference location from EEG-like channels if they
# already exist and are all the same.
# Note: ref position is an empty list for fieldtrip data
if len(ref_pos) and ref_pos[0].any() and (ref_pos[0] == ref_pos).all():
eeg_ref_pos = ref_pos[0]
# since we have an EEG reference position, we have
# to add it into the info['dig'] as EEG000
custom_eeg_ref_dig = True
else:
refs = set(ch_pos) & {"EEG000", "REF"}
assert len(refs) <= 1
eeg_ref_pos = np.zeros(3) if not refs else ch_pos.pop(refs.pop())
custom_eeg_ref_dig = False
del ref_pos
# This raises based on info being subset/superset of montage
info_names = [ch["ch_name"] for ch in chs]
dig_names = mnt_head._get_dig_names()
ref_names = [None, "EEG000", "REF"]
if match_case:
info_names_use = info_names
dig_names_use = dig_names
non_names_use = non_names
else:
ch_pos_use = OrderedDict((name.lower(), pos) for name, pos in ch_pos.items())
info_names_use = [name.lower() for name in info_names]
dig_names_use = [
name.lower() if name is not None else name for name in dig_names
]
non_names_use = [name.lower() for name in non_names]
ref_names = [name.lower() if name is not None else name for name in ref_names]
n_dup = len(ch_pos) - len(ch_pos_use)
if n_dup:
raise ValueError(
f"Cannot use match_case=False as {n_dup} montage "
"name(s) require case sensitivity"
)
n_dup = len(info_names_use) - len(set(info_names_use))
if n_dup:
raise ValueError(
f"Cannot use match_case=False as {n_dup} channel "
"name(s) require case sensitivity"
)
ch_pos = ch_pos_use
del ch_pos_use
del dig_names
# use lookup table to match unrecognized channel names to known aliases
if match_alias:
alias_dict = (
match_alias if isinstance(match_alias, dict) else CHANNEL_LOC_ALIASES
)
if not match_case:
alias_dict = {
ch_name.lower(): ch_alias.lower()
for ch_name, ch_alias in alias_dict.items()
}
# excluded ch_alias not in info, to prevent unnecessary mapping and
# warning messages based on aliases.
alias_dict = {ch_name: ch_alias for ch_name, ch_alias in alias_dict.items()}
info_names_use = [
alias_dict.get(ch_name, ch_name) for ch_name in info_names_use
]
non_names_use = [alias_dict.get(ch_name, ch_name) for ch_name in non_names_use]
# warn user if there is not a full overlap of montage with info_chs
missing = np.where([use not in ch_pos for use in info_names_use])[0]
if len(missing): # DigMontage is subset of info
missing_names = [info_names[ii] for ii in missing]
pl = _pl(missing)
are_is = "are" if pl else "is"
missing_coord_msg = (
f"DigMontage is only a subset of info. There {are_is} "
f"{len(missing)} channel position{pl} not present in the "
f"DigMontage. The channel{pl} missing from the montage {are_is}:"
f"\n\n{missing_names}.\n\nConsider using inst.rename_channels to "
"match the montage nomenclature, or inst.set_channel_types if "
f"{'these' if pl else 'this'} {are_is} not {'' if pl else 'an '}"
f"EEG channel{pl}, or use the on_missing parameter if the channel "
f"position{pl} {are_is} allowed to be unknown in your analyses."
)
_on_missing(on_missing, missing_coord_msg)
# set ch coordinates and names from digmontage or nan coords
for ii in missing:
ch_pos[info_names_use[ii]] = [np.nan] * 3
del info_names
assert len(non_names_use) == len(non_names)
# There are no issues here with fNIRS being in non_names_use because
# these names are like "D1_S1_760" and the ch_pos for a fNIRS montage
# will have entries "D1" and "S1".
extra = np.where([non in ch_pos for non in non_names_use])[0]
if len(extra):
types = "/".join(sorted(set(channel_type(info, non_picks[ii]) for ii in extra)))
names = [non_names[ii] for ii in extra]
warn(
f"Not setting position{_pl(extra)} of {len(extra)} {types} "
f"channel{_pl(extra)} found in montage:\n{names}\n"
"Consider setting the channel types to be of "
f'{docdict["montage_types"]} '
"using inst.set_channel_types before calling inst.set_montage, "
"or omit these channels when creating your montage."
)
for ch, use in zip(chs, info_names_use):
# Next line modifies info['chs'][#]['loc'] in place
if use in ch_pos:
ch["loc"][:6] = _backcompat_value(ch_pos[use], eeg_ref_pos)
ch["coord_frame"] = FIFF.FIFFV_COORD_HEAD
del ch_pos
# XXX this is probably wrong as it uses the order from the montage
# rather than the order of our info['ch_names'] ...
digpoints = [
mnt_head.dig[ii]
for ii, name in enumerate(dig_names_use)
if name in (info_names_use + ref_names)
]
# get a copy of the old dig
if info["dig"] is not None:
old_dig = info["dig"].copy()
else:
old_dig = []
# determine if needed to add an extra EEG REF DigPoint
if custom_eeg_ref_dig:
# ref_name = 'EEG000' if match_case else 'eeg000'
ref_dig_dict = {
"kind": FIFF.FIFFV_POINT_EEG,
"r": eeg_ref_pos,
"ident": 0,
"coord_frame": info["dig"].pop()["coord_frame"],
}
ref_dig_point = _format_dig_points([ref_dig_dict])[0]
# only append the reference dig point if it was already
# in the old dig
if ref_dig_point in old_dig:
digpoints.append(ref_dig_point)
# Next line modifies info['dig'] in place
with info._unlock():
info["dig"] = _format_dig_points(digpoints, enforce_order=True)
del digpoints
# TODO: Ideally we would have a check like this, but read_raw_bids for ECoG
# allows for a montage to be set without any fiducials, then silently the
# info['dig'] can end up in the MNI_TAL frame... only because in our
# conversion code, UNKNOWN is treated differently from any other frame
# (e.g., MNI_TAL). We should clean this up at some point...
# missing_fids = sum(
# d['kind'] == FIFF.FIFFV_POINT_CARDINAL for d in info['dig'][:3]) != 3
# if missing_fids:
# raise RuntimeError(
# 'Could not find all three fiducials in the montage, this should '
# 'not happen. Please contact MNE-Python developers.')
# Handle fNIRS with source, detector and channel
fnirs_picks = _picks_to_idx(info, "fnirs", allow_empty=True)
if len(fnirs_picks) > 0:
_set_montage_fnirs(info, mnt_head)
def _read_isotrak_elp_points(fname):
"""Read Polhemus Isotrak digitizer data from a ``.elp`` file.
Parameters
----------
fname : path-like
The filepath of .elp Polhemus Isotrak file.
Returns
-------
out : dict of arrays
The dictionary containing locations for 'nasion', 'lpa', 'rpa'
and 'points'.
"""
value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
coord_pattern = rf"({value_pattern})\s+({value_pattern})\s+({value_pattern})\s*$"
with open(fname) as fid:
file_str = fid.read()
points_str = [
m.groups() for m in re.finditer(coord_pattern, file_str, re.MULTILINE)
]
points = np.array(points_str, dtype=float)
return {
"nasion": points[0],
"lpa": points[1],
"rpa": points[2],
"points": points[3:],
}
def _read_isotrak_hsp_points(fname):
"""Read Polhemus Isotrak digitizer data from a ``.hsp`` file.
Parameters
----------
fname : path-like
The filepath of .hsp Polhemus Isotrak file.
Returns
-------
out : dict of arrays
The dictionary containing locations for 'nasion', 'lpa', 'rpa'
and 'points'.
"""
def get_hsp_fiducial(line):
return np.fromstring(line.replace("%F", ""), dtype=float, sep="\t")
with open(fname) as ff:
for line in ff:
if "position of fiducials" in line.lower():
break
nasion = get_hsp_fiducial(ff.readline())
lpa = get_hsp_fiducial(ff.readline())
rpa = get_hsp_fiducial(ff.readline())
_ = ff.readline()
line = ff.readline()
if line:
n_points, n_cols = np.fromstring(line, dtype=int, sep="\t")
points = np.fromstring(
string=ff.read(),
dtype=float,
sep="\t",
).reshape(-1, n_cols)
assert points.shape[0] == n_points
else:
points = np.empty((0, 3))
return {"nasion": nasion, "lpa": lpa, "rpa": rpa, "points": points}
def read_dig_polhemus_isotrak(fname, ch_names=None, unit="m"):
"""Read Polhemus digitizer data from a file.
Parameters
----------
fname : path-like
The filepath of Polhemus ISOTrak formatted file.
File extension is expected to be ``'.hsp'``, ``'.elp'`` or ``'.eeg'``.
ch_names : None | list of str
The names of the points. This will make the points
considered as EEG channels. If None, channels will be assumed
to be HPI if the extension is ``'.elp'``, and extra headshape
points otherwise.
unit : ``'m'`` | ``'cm'`` | ``'mm'``
Unit of the digitizer file. Polhemus ISOTrak systems data is usually
exported in meters. Defaults to ``'m'``.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
make_dig_montage
read_polhemus_fastscan
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_localite
"""
VALID_FILE_EXT = (".hsp", ".elp", ".eeg")
fname = str(_check_fname(fname, overwrite="read", must_exist=True))
_scale = _check_unit_and_get_scaling(unit)
_, ext = op.splitext(fname)
_check_option("fname", ext, VALID_FILE_EXT)
if ext == ".elp":
data = _read_isotrak_elp_points(fname)
else:
# Default case we read points as hsp since is the most likely scenario
data = _read_isotrak_hsp_points(fname)
if _scale != 1:
data = {key: val * _scale for key, val in data.items()}
else:
pass # noqa
if ch_names is None:
keyword = "hpi" if ext == ".elp" else "hsp"
data[keyword] = data.pop("points")
else:
points = data.pop("points")
if points.shape[0] == len(ch_names):
data["ch_pos"] = OrderedDict(zip(ch_names, points))
else:
raise ValueError(
"Length of ``ch_names`` does not match the number of points in "
f"{fname}. Expected ``ch_names`` length {points.shape[0]}, given "
f"{len(ch_names)}"
)
return make_dig_montage(**data)
def _is_polhemus_fastscan(fname):
header = ""
with open(fname) as fid:
for line in fid:
if not line.startswith("%"):
break
header += line
return "FastSCAN" in header
@verbose
def read_polhemus_fastscan(
fname, unit="mm", on_header_missing="raise", *, verbose=None
):
"""Read Polhemus FastSCAN digitizer data from a ``.txt`` file.
Parameters
----------
fname : path-like
The path of ``.txt`` Polhemus FastSCAN file.
unit : ``'m'`` | ``'cm'`` | ``'mm'``
Unit of the digitizer file. Polhemus FastSCAN systems data is usually
exported in millimeters. Defaults to ``'mm'``.
%(on_header_missing)s
%(verbose)s
Returns
-------
points : array, shape (n_points, 3)
The digitization points in digitizer coordinates.
See Also
--------
read_dig_polhemus_isotrak
make_dig_montage
"""
VALID_FILE_EXT = [".txt"]
fname = str(_check_fname(fname, overwrite="read", must_exist=True))
_scale = _check_unit_and_get_scaling(unit)
_, ext = op.splitext(fname)
_check_option("fname", ext, VALID_FILE_EXT)
if not _is_polhemus_fastscan(fname):
msg = f"{fname} does not contain a valid Polhemus FastSCAN header"
_on_missing(on_header_missing, msg)
points = _scale * np.loadtxt(fname, comments="%", ndmin=2)
_check_dig_shape(points)
return points
def _read_eeglab_locations(fname):
ch_names = np.genfromtxt(fname, dtype=str, usecols=3).tolist()
topo = np.loadtxt(fname, dtype=float, usecols=[1, 2])
sph = _topo_to_sph(topo)
pos = _sph_to_cart(sph)
pos[:, [0, 1]] = pos[:, [1, 0]] * [-1, 1]
return ch_names, pos
@verbose
def read_custom_montage(
fname, head_size=HEAD_SIZE_DEFAULT, coord_frame=None, *, verbose=None
):
"""Read a montage from a file.
Parameters
----------
fname : path-like
File extension is expected to be:
``'.loc'`` or ``'.locs'`` or ``'.eloc'`` (for EEGLAB files),
``'.sfp'`` (BESA/EGI files), ``'.csd'``,
``'.elc'``, ``'.txt'``, ``'.csd'``, ``'.elp'`` (BESA spherical),
``'.bvef'`` (BrainVision files),
``'.csv'``, ``'.tsv'``, ``'.xyz'`` (XYZ coordinates).
head_size : float | None
The size of the head (radius, in [m]). If ``None``, returns the values
read from the montage file with no modification. Defaults to 0.095m.
coord_frame : str | None
The coordinate frame of the points. Usually this is ``"unknown"``
for native digitizer space. Defaults to None, which is ``"unknown"``
for most readers but ``"head"`` for EEGLAB.
.. versionadded:: 0.20
%(verbose)s
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
make_dig_montage
make_standard_montage
read_dig_fif
Notes
-----
The function is a helper to read electrode positions you may have
in various formats. Most of these format are weakly specified
in terms of units, coordinate systems. It implies that setting
a montage using a DigMontage produced by this function may
be problematic. If you use a standard/template (eg. 10/20,
10/10 or 10/05) we recommend you use :func:`make_standard_montage`.
If you can have positions in memory you can also use
:func:`make_dig_montage` that takes arrays as input.
"""
from ._standard_montage_utils import (
_read_brainvision,
_read_csd,
_read_elc,
_read_elp_besa,
_read_sfp,
_read_theta_phi_in_degrees,
_read_xyz,
)
SUPPORTED_FILE_EXT = {
"eeglab": (
".loc",
".locs",
".eloc",
),
"hydrocel": (".sfp",),
"matlab": (".csd",),
"asa electrode": (".elc",),
"generic (Theta-phi in degrees)": (".txt",),
"standard BESA spherical": (".elp",), # NB: not same as polhemus elp
"brainvision": (".bvef",),
"xyz": (".csv", ".tsv", ".xyz"),
}
fname = str(_check_fname(fname, overwrite="read", must_exist=True))
_, ext = op.splitext(fname)
_check_option("fname", ext, list(sum(SUPPORTED_FILE_EXT.values(), ())))
if ext in SUPPORTED_FILE_EXT["eeglab"]:
if head_size is None:
raise ValueError(f"``head_size`` cannot be None for '{ext}'")
ch_names, pos = _read_eeglab_locations(fname)
scale = head_size / np.median(np.linalg.norm(pos, axis=-1))
pos *= scale
montage = make_dig_montage(
ch_pos=OrderedDict(zip(ch_names, pos)),
coord_frame="head",
)
elif ext in SUPPORTED_FILE_EXT["hydrocel"]:
montage = _read_sfp(fname, head_size=head_size)
elif ext in SUPPORTED_FILE_EXT["matlab"]:
montage = _read_csd(fname, head_size=head_size)
elif ext in SUPPORTED_FILE_EXT["asa electrode"]:
montage = _read_elc(fname, head_size=head_size)
elif ext in SUPPORTED_FILE_EXT["generic (Theta-phi in degrees)"]:
if head_size is None:
raise ValueError(f"``head_size`` cannot be None for '{ext}'")
montage = _read_theta_phi_in_degrees(
fname, head_size=head_size, fid_names=("Nz", "LPA", "RPA")
)
elif ext in SUPPORTED_FILE_EXT["standard BESA spherical"]:
montage = _read_elp_besa(fname, head_size)
elif ext in SUPPORTED_FILE_EXT["brainvision"]:
montage = _read_brainvision(fname, head_size)
elif ext in SUPPORTED_FILE_EXT["xyz"]:
montage = _read_xyz(fname)
if coord_frame is not None:
coord_frame = _coord_frame_const(coord_frame)
for d in montage.dig:
d["coord_frame"] = coord_frame
return montage
def compute_dev_head_t(montage):
"""Compute device to head transform from a DigMontage.
Parameters
----------
montage : DigMontage
The `~mne.channels.DigMontage` must contain the fiducials in head
coordinate system and hpi points in both head and
meg device coordinate system.
Returns
-------
dev_head_t : Transform
A Device-to-Head transformation matrix.
"""
_, coord_frame = _get_fid_coords(montage.dig)
if coord_frame != FIFF.FIFFV_COORD_HEAD:
raise ValueError(
"montage should have been set to head coordinate "
"system with transform_to_head function."
)
hpi_head = np.array(
[
d["r"]
for d in montage.dig
if (
d["kind"] == FIFF.FIFFV_POINT_HPI
and d["coord_frame"] == FIFF.FIFFV_COORD_HEAD
)
],
float,
)
hpi_dev = np.array(
[
d["r"]
for d in montage.dig
if (
d["kind"] == FIFF.FIFFV_POINT_HPI
and d["coord_frame"] == FIFF.FIFFV_COORD_DEVICE
)
],
float,
)
if not (len(hpi_head) == len(hpi_dev) and len(hpi_dev) > 0):
raise ValueError(
"To compute Device-to-Head transformation, the same number of HPI"
f" points in device and head coordinates is required. (Got {len(hpi_dev)}"
f" points in device and {len(hpi_head)} points in head coordinate systems)"
)
trans = _quat_to_affine(_fit_matched_points(hpi_dev, hpi_head)[0])
return Transform(fro="meg", to="head", trans=trans)
@verbose
def compute_native_head_t(montage, *, on_missing="warn", verbose=None):
"""Compute the native-to-head transformation for a montage.
This uses the fiducials in the native space to transform to compute the
transform to the head coordinate frame.
Parameters
----------
montage : instance of DigMontage
The montage.
%(on_missing_fiducials)s
.. versionadded:: 1.2
%(verbose)s
Returns
-------
native_head_t : instance of Transform
A native-to-head transformation matrix.
"""
# Get fiducial points and their coord_frame
fid_coords, coord_frame = _get_fid_coords(montage.dig, raise_error=False)
if coord_frame is None:
coord_frame = FIFF.FIFFV_COORD_UNKNOWN
if coord_frame == FIFF.FIFFV_COORD_HEAD:
native_head_t = np.eye(4)
else:
fid_keys = ("nasion", "lpa", "rpa")
for key in fid_keys:
this_coord = fid_coords[key]
if this_coord is None or np.any(np.isnan(this_coord)):
msg = (
f"Fiducial point {key} not found, assuming identity "
f"{_verbose_frames[coord_frame]} to head transformation"
)
_on_missing(on_missing, msg, error_klass=RuntimeError)
native_head_t = np.eye(4)
break
else:
native_head_t = get_ras_to_neuromag_trans(
*[fid_coords[key] for key in fid_keys]
)
return Transform(coord_frame, "head", native_head_t)
def make_standard_montage(kind, head_size="auto"):
"""Read a generic (built-in) standard montage that ships with MNE-Python.
Parameters
----------
kind : str
The name of the montage to use.
.. note::
You can retrieve the names of all
built-in montages via :func:`mne.channels.get_builtin_montages`.
head_size : float | None | str
The head size (radius, in meters) to use for spherical montages.
Can be None to not scale the read sizes. ``'auto'`` (default) will
use 95mm for all montages except the ``'standard*'``, ``'mgh*'``, and
``'artinis*'``, which are already in fsaverage's MRI coordinates
(same as MNI).
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
get_builtin_montages
make_dig_montage
read_custom_montage
Notes
-----
Individualized (digitized) electrode positions should be read in using
:func:`read_dig_captrak`, :func:`read_dig_dat`, :func:`read_dig_egi`,
:func:`read_dig_fif`, :func:`read_dig_polhemus_isotrak`,
:func:`read_dig_hpts`, or manually made with :func:`make_dig_montage`.
.. versionadded:: 0.19.0
"""
from ._standard_montage_utils import standard_montage_look_up_table
_validate_type(kind, str, "kind")
_check_option(
parameter="kind",
value=kind,
allowed_values=[m.name for m in _BUILTIN_STANDARD_MONTAGES],
)
_validate_type(head_size, ("numeric", str, None), "head_size")
if isinstance(head_size, str):
_check_option("head_size", head_size, ("auto",), extra="when str")
if kind.startswith(("standard", "mgh", "artinis")):
head_size = None
else:
head_size = HEAD_SIZE_DEFAULT
return standard_montage_look_up_table[kind](head_size=head_size)
def _check_dig_shape(pts):
_validate_type(pts, np.ndarray, "points")
if pts.ndim != 2 or pts.shape[-1] != 3:
raise ValueError(f"Points must be of shape (n, 3) instead of {pts.shape}")